LBIS® 大鼠生长激素(GH) ELISA试剂盒 LBIS® Rat GH ELISA Kit

产品中心 > 生命科学 > 疾病研究 > LBIS® 动物代谢检测试剂盒系列

LBIS® 大鼠生长激素(GH) ELISA试剂盒
LBIS® Rat GH ELISA Kit

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

LBIS® 大鼠生长激素(GH) ELISA试剂盒                              LBIS® Rat GH ELISA Kit

大鼠生长激素(GH) ELISA试剂盒



  生长激素(Growth hormone,别名Somatotrophic hormone、 STH、 Somatotrop(h)in)主要是由垂体前叶嗜酸性腺垂体分泌的蛋白激素,在大脑和淋巴细胞表达。与GH高度相似的GH2表达于人的胎盘。GH作用于肝脏肌肉肾脏软骨细胞成纤维细胞胸腺上皮细胞。在IGF-1作用下,通过软骨细胞的增殖、硫酸软骨素的合成、肝脏其他器官细胞肥大增殖、促蛋白合成等促进生长,对胸腺细胞分泌胸腺素起到促进作用。GH暂时性表达胰岛素样作用,之后在脂肪细胞中通过脂肪分解增加游离脂肪酸、血糖上升、胰岛素拮抗作用抑制糖分解、肌肉中糖原含量增加、末梢组织胰岛素灵敏性下降等代谢方面起到一定双相性作用。还起到类似催乳素作用对Na、K、Mg、Ca、P的存积促进小肠Ca吸收乳腺发育乳汁分泌等作用。

GHRH生长素释放肽甲状腺激素皮质醇视黄酸均可促进GH合成分泌。另外通过胰高血糖素加压素2-脱氧-D-葡萄糖耐受性精氨酸等酸负载蛋白质摄入TF5β-内啡肽左旋多巴肾上腺素α受体刺激等可促进GH分泌。促进GH分泌的生理状态是低血糖应激(发热,外伤,出血,乙醚麻醉,精神焦虑)空腹运动慢波睡眠等。GH分泌会抑制引起促生长素抑制素(SRIF)活化素肾上腺素β受体刺激葡萄糖游离脂肪酸皮质类固醇投放高浓度IGF-1高浓度GH等现象发生。抑制GH分泌的生理状态是高血糖增加血液中的脂肪异相睡眠等。GH分泌是具有episodic性的。也就是说可间隔性地使血糖浓度急剧上升或下降。因此非人为采血时血中GH水平会变化很大。

◆特点

LBIS® 大鼠生长激素(GH) ELISA试剂盒                              LBIS® Rat GH ELISA Kit

● 测定时间短(总反应时间:5小时)

● 微量样本(标准操作法5 μL)即可测定。

● 使用无害的防腐剂。

● 全部试剂为溶液即用类型。

● 高测定精度和高重复性。

 

试剂盒组成


组成品

状态

包装

抗体包被96孔板

清洗后使用

96 wells(8×12)/1个

标准溶液(20 ng/mL)

稀释后使用

100 μL/1瓶

缓冲液

直接使用

60 mL/1瓶

生物素结合抗GH抗体

稀释后使用

100 μL/1瓶

过氧化物酶·抗生素结合物

稀释后使用

100 μL/1瓶

显色液(TMB)

直接使用

12 mL/1瓶

终止液(1M H2SO4

※小心轻放

直接使用

12 mL/1瓶

浓缩清洗液(10×)

稀释后使用

100 mL/1瓶

孔板密封膜

4个

产品说明书

1本

 


物种交叉性


2000 pg/mL时数据+:有交叉性   ―:无交叉性


动物种类

对象物质

反应性及反应率(%)

大鼠

r-GH

100

Prolactin

0.02

Placental   lactogen

0.02

TSH

LH

FSH

小鼠

GH

TSH

 


◆样本信息


● 大鼠血清·血浆

● 5 μL/well(标准操作法)

※ 样本量可调节范围:5~25 μL。但需用缓冲液将板孔总量调制至50 μL

※ 推荐使用1 mg/mL (终浓度)EDTA作为抗凝剂。

 


◆测定范围


● 31.3~2,000 pg/mL(标准曲线范围)

● 62.6~4,000 pg/mL(样本量25 μL时)

● 0.313~20 ng/mL(标准操作时)

 


◆实验数据


精度测试(组内变异)


样本

A

B

1

262

864

2

247

837

3

250

813

4

258

775

5

251

780

6

257

800

7

254

771

8

270

779

Mean

256

802

SD

7.19

33.5

CV(%)

2.8

4.2

单位:pg/mL



重复性测试(组间变异)


测定日/样本

E

F

G

0天

1626

412

96.0

1天

1576

407

97.9

2天

1615

409

96.1

3天

1561

401

103

Mean

1595

407

98.3

SD

31.0

4.50

3.35

CV(%)

1.9

1.1

3.4

单位:pg/mL,n=4



加标回收测试


样本C


添加量

实测值

回收量

回收率(%)

0.00

101

155

265

164

106

192

285

184

95.8

223

325

224

100

单位:pg/mL,n=2


样本D


添加量

实测值

回收量

回收率(%)

0.00

506

303

822

316

104

466

949

443

95.1

539

1058

552

102

单位:pg/mL,n=2



稀释直线性测试


2个血清样本连续用稀释缓冲液稀释3个梯度测定结果,直线回归值R2=0.999。

参考文献

1.

Daily Fasting Blood Glucose Rhythm in Male Mice: A Role of the Circadian Clock in the Liver. Ando H, Ushijima K, Shimba S, Fujimura A. Endocrinology. 2016 Feb;157(2):463-9.


2.

Casted-immobilization downregulates glucocorticoid receptor expression in rat slow-twitch soleus muscle. Sato S., Suzuki H., Tsujimoto H., Shirato K., Tachiyashiki K., Imaizumia K. Life Sciences, Vol.89(25-26), p962-967, Dec 2011.


3.

Activation of PPARδ promotes mitochondrial energy metabolism and decreases basal insulin secretion in palmitate-treated β-cells. Jiang L., Wan J., Ke L., LU Q., Tong N. Molecular and Cellular Biochemistry, Vol.343(1-2), p249-256, Oct 2010.


4.

The CXCR4 antagonist AMD3100 suppresses hypoxia-mediated growth hormone production in GH3 rat pituitary adenoma cells. Yoshida,D.,Koketshu,K.,Nomura,R.,Teramoto,A. J Neurooncol, 2010.


产品列表

产品编号 产品名称 产品规格 产品等级 备注
639-13749 (AKRGH-010)LBIS® Rat GH ELISA Kit
LBIS® 大鼠生长激素(GH) ELISA试剂盒
96 tests

免责声明

1. 本公司密切关注本网站发布的内容,但不保证发布内容的准确性、完整性、可靠性和最新性等。

2. 本公司不保证使用本网站期间不会出现故障或计算机病毒污染的风险。

3. 无论何种原因,使用本网站时给用户或第三方造成的任何不利或损害,本公司概不负责。此外,对于用户与其他用户或第三方之间因本网站发生的任何交易、通讯

3. 纠纷,本公司概不负责。

4. 本网站可提供的所有产品和服务均不得用于人体或动物的临床诊断或治疗,仅可用于科研等非医疗目的。如任何用户将本网站提供的产品和服务用临床诊断或治

4. 疗,以及他特定的用途或行为,本公司概不保证其安全性和有效性,并且不负任何相关的法律责任。

LBIS® 抗dsDNA-小鼠ELISA试剂盒 LBIS® Mouse Anti-dsDNA ELISA Kit

产品中心 > 生命科学 > 疾病研究 > 感染&自身免疫疾病

LBIS® 抗dsDNA-小鼠ELISA试剂盒
LBIS® Mouse Anti-dsDNA ELISA Kit

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

LBIS® 抗dsDNA-小鼠ELISA试剂盒LBIS® 抗dsDNA-小鼠ELISA试剂盒                              LBIS® Mouse Anti-dsDNA ELISA Kit

LBIS® Mouse Anti-dsDNA ELISA Kit

 

  近年来研究人员多通过使用与人具有同样的自身免疫性疾病的实验动物自然发病和人为使实验动物发症的方式来研究自身免疫性疾病的机制阐明和新型药物开发。自然发病系统代表的MRL/lpr小鼠被应用到很多实验。MRL/lpr小鼠在淋巴结肿瘤发病同时伴随着肾炎、血管炎、关节炎的高机率发病,对包含慢性风湿性关节炎(RA)模型的自身免疫性疾病发病机制的阐明,可作为有效的模型进行研究。MRL/lpr小鼠血清中被检测出自身抗体有IgG型类风湿因子(RF)、IgM型类风湿因子(RF)、抗ssDNA 抗体、抗dsDNA 抗体、抗Sm 抗体。

  通过使用该疾病动物血清中自身抗体含量做标准曲线,通过单位转换,可进行测量之间数值的比较。

  LBIS® 抗dsDNA-小鼠ELISA试剂盒采用了测定小鼠抗dsDNA 抗体浓度的夹心酶联免疫测定法。

  此试剂盒仅限研究使用。

 


◆特点


● 全反应时间是4小时20分钟。

● 测定小鼠血清或者血浆(肝素血浆除外)中的抗dsDNA 抗体浓度。

● 可测定微量样本(标准操作法是5 μL)。

● 1个试剂盒可做96孔。

● 标准品是小鼠源。

● 全部试剂均为液体。



试剂盒的保存和使用期限


  试剂盒在2-8℃保存。此保存条件下,有效期(记载在外箱标签)内试剂盒是稳定的。开封的试剂对应保存状态可能会受到影响,请尽早使用。

◆测定原理


  本试剂盒是标准品、稀释样本在抗原包被的微孔板中进行孵育处理。孵育2小时后清洗,加入过氧化物酶结合抗小鼠IgG抗体,与捕捉的抗体孵育2小时。清洗后,显色剂(TMB)与孔中残留的过氧化物酶反应。添加酸性溶液可终止反应。反应生成的黄色产物在450 nm处(副波长620 nm)测定。吸光度与抗小鼠dsDNA 抗体浓度成正比。标准品浓度对应吸光度可制作成标准曲线。通过标准曲线获得未知样本浓度。



◆试剂盒组成


组成

状态

包装

(A)抗原包被96孔板

直接使用

96 wells((8×12)/个)

(B)标准抗小鼠dsDNA 抗体溶液(10000 mU/mL)※

浓缩液

100 μL/瓶

(C)缓冲液

直接使用

60 mL/瓶

(D)标记抗体

(过氧化物酶结合抗小鼠IgG抗体)

浓缩液

20 μL/瓶

(E)显色液(TMB)

直接使用

12 mL/瓶

(F)终止液(1M H2SO4)※注意操作

直接使用

12 mL/瓶

(G)浓缩清洗液(10×)

浓缩液

100 mL/瓶

盖板

1 个

操作说明书

1 本

※根据批次不同,数值有差异。

 


◆所需必要设备


● 蒸馏水。

● 标准溶液稀释用试管。

● 清洗液(稀释用溶液)用玻璃器具。(量筒·瓶)

● 枪头交换式移液器。(一次性枪头5 μL正规的移液枪,以及50-450 μL正规的移液枪)

● 连续分装移液枪。(例:Eppendorf 的multipette plus、可进行100 μL连续分装的仪器。)

● 纸巾等吸水性物品。(清洗后去除板上残留液体)

● 搅拌器。(Vortex类型)

● 96孔板用振荡器。(约800 rpm)

● 96孔板用清洗机(若有是最好)或者注射瓶。

● 96孔板酶标仪。(450 ±10 nm 、620 nm:600~650 nm)

● 数据分析用软件。(若有是最好)

 


◆试剂盒性能


● 测定范围

● 小鼠抗dsDNA 抗体检测范围在15.6-1000 mU/mL内。

● 特异性

● 本ELISA系统使用的标识抗体对抗小鼠IgG抗体具有特异性。

● 与小鼠IgM的反应交差性在检测灵敏度以下。

● 精密度实验

● ①批次变动(N=30)平均C.V.值是4.2%

● ②日差可重复性实验(N=30、3天)平均C.V.值是4.7%



欲了解更多相关产品信息,请点击文字:LBIS® 疾病相关动物模型ELISA试剂盒系列

相关资料


LBIS® 抗dsDNA-小鼠ELISA试剂盒                              LBIS® Mouse Anti-dsDNA ELISA Kit

LabAssay·shibayagi·NK细胞

◆注意事项 

● 本试剂盒需要由掌握ELISA 法技术的人员,或者是在技术人员指导下使用。

● 手动操作测定时请使用对可重复性较稳定的移液器。

● 准备工作以及本试剂盒操作中,请穿戴手套,眼镜,保护服。

 试剂类请不要接触皮肤。误将本试剂盒的试剂接触眼睛、口腔、伤口、皮肤等情况请立即进行应急处理,如用 ● 自来水彻底冲洗,必要时请就医。

● 使用本试剂盒的空间请不要进食和吸烟。

● 本试剂盒含有动物源成分。与测定样本一样可能会有感染的危险性,操作需要注意。

● 请不要使用加热灭活样本。

● 抗凝剂请使用除肝素以外试剂。

● 试剂类请勿入口。

● 批次号不同的产品请不要混合使用。

● 各步骤静置反应时,为防止板孔干燥、异物混入、分装试剂蒸发。请必须盖上盖板。

● ELISA法会受到测定环境影响的。测定操作、静置反应的室温严格控制在:20~25℃(实验台上或者是恒温箱 ● 内温度)。另外,避免在风速(也包括空调风)0.4 m/sec*以上,湿度不足30%的环境下测定。

   *若想获取相关标准的内容请联系我们。

 

◆技术提示


● 请注意样本和试剂中不要混入不纯物。建议使用1孔/1枪头。

● 显色剂在96孔板使用前是无色或者透明的。请避光保存。

● 终止液在96孔板使用前是无色的。将终止液加入到孔中,颜色立即从蓝色变成黄色。

● 不得已在风速:0.4 m/sec以上,湿度不满30%的操作环境下测定时,各步骤的静置反应均需要盖上盖板,请 ●   采取增加各孔的密闭度措施。

例:用封口膜覆盖板孔,在其上面覆盖盖板,或者在恒温箱内,泡沫塑料箱内静置反应等。要根据测定环境的条件制定出不同的对策方法。具体详细ELISA技术信息请联系我们。

● 使用完的样本,使用的消耗品等请用1%福尔马林、2%戊二醛或者0.1%以上的次氯酸钠溶液浸泡1小时。或者 ● 高压灭菌处理后废弃。另外,使用的消耗品和未使用的药品请按照规定以及法律和它所属的设施各区域的规章丢● 弃。

◆试剂配制

● 试剂盒的试剂使用前必须恢复到室温(20-25℃)

● 请按照测定所需用量制备试剂。

● 请不要使用超过有效期(外箱记载)的试剂。


室温直接使用的试剂

[抗原包被96孔板]

稳定性和保存方法

  未使用(在冷藏状态下请不要撕开密封膜)抗原包被袋是同捆的拉链密封袋,请在2-8℃保存。有效期内可稳定保存。

[缓冲液]和[显色液]

稳定性和保存方法

  使用部分溶液时将适量液体移至其他容器,其余请不要恢复室温,直接拧紧盖子,置于2-8℃保存。有效期内保持稳定。

[终止液(1M H2SO4)]※注意操作

稳定性和保存方法

  将剩余终止液瓶盖拧紧,置于2-8℃保存。有效期内保持稳定。


浓缩试剂类

[浓缩清洗液(10×)]

  浓缩清洗液(10×)用室温的蒸馏水10倍稀释,制备成实用稀释倍数1×溶液。

  例:100 mL的浓缩清洗液(10×)+900 mL蒸馏水(96孔板全部使用情况下)

稳定性和保存方法

  浓缩清洗液(10×)保存时要拧紧瓶盖,置于2-8℃保存。有效期内保持稳定。使用残留的稀释液请废弃。

[标准抗小鼠dsDNA 抗体溶液(10000 mU/mL)];抗体标准曲线制作用

  使用标准抗小鼠dsDNA 抗体溶液(10000 mU/mL)(原液)按下表(例)制成标准溶液。


标准溶液容量

缓冲液

浓度(mU/mL)

原液50 μL

450 μL

1000

1000 mU/mL溶液250 μL

250 μL

500

500 mU/mL溶液250 μL

250 μL

250

250 mU/mL溶液250 μL

250 μL

125

125 mU/mL溶液250 μL

250 μL

62.5

62.5 mU/mL溶液250 μL

250 μL

31.3

31.3 mU/mL溶液250 μL

250 μL

15.6

0(空白)

250 μL

0


稳定性和保存方法

  拆分试剂盒使用前从冷藏柜取出稀释制备,剩余原液不要置于室温,将瓶盖拧紧后,置于2-8℃保存。有效期内保持稳定。稀释的标准溶液直接使用,请不要保存。

[标记抗体(过氧化物酶结合抗小鼠IgG抗体)]

  提供充分使用量20 μL。

  请将浓缩液用缓冲液稀释2000倍(推荐分2步稀释)

稳定性和保存方法

  拆分试剂盒使用前从冷藏柜取出稀释制备,剩余原液不要置于室温,将瓶盖拧紧后,置于2-8℃保存。有效期内保持稳定。剩余稀释液请废弃。

 

◆样本的制备

  本试剂盒可测定小鼠血清或者血浆中抗小鼠dsDNA 抗体浓度。样本请按照常规方法采集的血清或者血浆。除肝素以外的抗凝剂均可使用。请不要使用加热灭活样本。根据测定范围(15.6-1000 mU/mL),利用试剂盒的缓冲液稀释样本。稀释倍数为51倍,101倍,201倍。稀释样本时,预先在试管等容器用缓冲液稀释,然后分装至检测孔中。若怀疑是有干扰物质影响的标本,在同一样本情况下,请稀释100倍以上方可测定。另外,请用不同2个点以上的稀释率确定稀释直线性。浑浊以及含有难溶物的样本需要离心分离除去后方可测定。另外,请不要使用溶血样本和高脂质样本。

稳定性和保存方法

  样本采集后立即测定,需要一周内测定时,请保存在2-8℃条件下。另外,长时间保存情况下需要-35℃以下冻存管保存。测定前解冻样本需要充分搅拌,避免反复冻融。此为造成得不到正确结果的原因。

 

◆测定操作方法

[抗原包被微孔板的密封是,微孔板充分恢复到室温后方可除去。]

1.用预先制备清洗液对每孔加满清洗3遍。然后将板倒扣在纸巾上,轻轻叩击孔板除去残留液体。

2.准(抗体)溶液或者稀释样本溶液,每孔分装100 μL。

3.于微孔板振荡器充分搅拌**。

4.覆盖板盖,室温下静置2小时。

5.反应终止后,除去反应液,用清洗液对每孔加满清洗3遍。然后将板倒扣在纸巾上,轻轻叩击除去残留液体。

6.各板孔中分装标识抗体(过氧化物酶结合抗小鼠IgG抗体)100 μL,置于微孔板振荡器充分搅拌**。

7.覆盖板盖,室温下(20~25℃)静置2小时。

8.反应终止后,除去反应液,用清洗液对每孔清洗3遍*。然后将板倒扣在纸巾上,轻轻叩击除去残留液体。

9.向各孔分装显色液100 μL。置于微孔板振荡器充分搅拌**。

10.覆盖板盖,室温下(20~25℃)静置20分钟。

11.向各板分装终止液100 μL。终止显色反应。

12.将搅拌**后微孔板在分光光度计450 nm处(副波长620 nm)测定吸光度。

13.副波长是600-650 nm范围内使用。


注意

*清洗液的液量值是300 μL/孔。

使用平板清洗器的压力值:5-25 mL/分(取决于喷嘴的直径)

请注意清洗液倒出后的干燥情况。

**搅拌标准:800 rpm-10秒*3次


图1 工作表(例)

1&2列

3&4列

5&6列

7&8列

9&10列

11&12列

A

100 mU/mL

阳性对照

样本8

样本16

样本24

样本32

B

500 mU/mL

样本1

样本9

样本17

样本25

样本33

C

250 mU/mL

样本2

样本10

样本18

样本26

样本34

D

125 mU/mL

样本3

样本11

样本19

样本27

样本35

E

62.5 mU/mL

样本4

样本12

样本20

样本28

样本36

F

31.3 mU/mL

样本5

样本13

样本21

样本29

样本37

G

15.6

样本6

样本14

样本22

样本30

样本38

H

0

样本7

样本15

样本23

样本31

样本39

 

◆计算

1.制作抗体标准曲线。使用半对数X轴(Log)表示抗体浓度(mU/mL),Y轴表示吸光度的抗体标准曲线。

2.通过抗体标准曲线,获得稀释样本的吸光度对应的抗体浓度(mU/mL),抗体浓度乘以稀释倍数即为测定值。

*样本的吸光度在标准曲线吸光度以外的情况,用缓冲液进行适当地稀释后再次检测。

*吸光度在标准溶液最高浓度附近的样本需要用缓冲液进行适当地稀释后再次检测。

*计算机软件演算处理推荐使用3阶多项式,或4个参数。

*本试剂盒的测定值为小鼠样本的抗dsDNA 抗体浓度较方便确定的数值,这是使用本公司同一款试剂盒,以及使用其他设备的检测的数据进行比较的数值。小鼠的临床表现是由临床症状和其他的检测结果等进行综合判断。

抗体浓度标准曲线例子。(吸光度会根据测定环境而变化)

LBIS® 抗dsDNA-小鼠ELISA试剂盒                              LBIS® Mouse Anti-dsDNA ELISA Kit


*所用酶标仪为SUNRISE RAINBOW(TECAN)

◆测定操作概述

*必须详细阅读操作说明书后再进行检测操作。

● 孔板、试剂类完全恢复到室温。

● 浓缩清洗液的稀释:用室温的蒸馏水稀释10倍。

● 标准溶液的稀释(例):用室温的缓冲液稀释。

LBIS® 抗dsDNA-小鼠ELISA试剂盒                              LBIS® Mouse Anti-dsDNA ELISA Kit

 

● 阳性对照样本的制作,样本的制作。注:*最高浓度的标准溶液

抗原包被96孔板

↓洗净3次*

稀释样本或标准(抗体)溶液

100 μL

↓搅拌**,室温反应2小时(静置***)

↓清洗3次*

标记抗体(过氧化物结合抗小鼠IgG抗体)

的稀释用室温缓冲液,稀释2000倍

↓清洗3次*

标记抗体(过氧化物酶结合抗小鼠IgG抗体)

100 μL

↓搅拌**,室温反应2小时(静置***)

↓洗净3次*

显色液(TMB)

100 μL

↓搅拌**,室温反应2小时(静置***)

终止液(1M H2SO4)※注意操作

100 μL

↓搅拌**

吸光度测定(主波长450 nm,副波长620 nm)

室温:20~25℃

 

*平板清洗机或者用移液枪添加清洗液时的液量值:300 μL/孔

*平板清洗机压力值:5-25 mL/分(取决于喷嘴的直径)

*请注意清洗液倒出后的干燥情况。

**搅拌标准:800 rpm-10秒*3次

**副波长请设定范围为600-650 nm。

***搅拌完毕后在96孔板上覆盖盖板后静置处理。


Q&A 


● 全部孔的反应很弱

可能原因

⑴ 未加入标准品和样本。

⑵ 未加入显色相关试剂溶液

⑶ 弄错显色相关试剂溶液或未稀释制备。

⑷ 混入酶抑制剂。

⑸ 试剂盒保存温度的影响(冻存情况)

⑹ 微孔板清洗过度。

⑺ 显色液温度过低。


● 空白OD值比最小标准溶液浓度(15.6 mU/mL)的OD值高。

可能原因

清洗不当,清洗不完全。

(过氧化物酶结合抗体反应后清洗次数按照同样流速增加到4-6次。)


● 变动系数(CV)大

可能原因

①    清洗不当,清洗不完全。

②    准品和管理血清或者样本搅拌不充分。(请充分搅拌冻存样本)

③    移液器操作不一致。


Q1:试剂盒拆分之后能使用吗?

A1:可以。请使用切割工具将贴在平板的透明密封条带切割分开。不用的平板需要密封后保存在冷藏柜中。

Q2:要是取出平板时孔中有液体,究竟是什么?

A2:出货时填充的保存稳定液。

[1]

Original reports 

Parasites alter the pathological phenotype of lupus nephritis

Miyake. K.., Adachi. K.., Watanabe. M., Sasatomi. Y., Ogahara. S., Abe. Y., Ito. K., Dan Justin. YK., Saito. T., Nakashima. H. and Hamano. S.

Autoimmunity, 24:1-10, Jun. 2014.

[2]

Reactivity of autoantibodies against not only erythrocytes but also hepatocytes in sera   of mice with malaria

Kanda. Y., Kawamura. T., Kobayashi. T., Kawamura. H., Watanabe. H., Abo. T.

Cellular Immunology, Vol.289(1-2), p162-166, May-Jun 2014.

[3]

Epicutaneous Application of Toll-like Receptor 7 Agonists Leads to Systemic Autoimmunity in Wild-Type Mice: A New Model of Systemic Lupus Erythematosus

Yokogawa. M.,Takaishi. M., Nakajima. K., Kamijima. R., Fujimoto. C., Kataoka. S., Terada. Y. and Sano. S.

Arthritis & Rheumatology, Vol.66(3), p694-706, Mar. 2014.

[4]

Deficient Leptin Signaling Ameliorates Systemic Lupus Erythematosus Lesions in MRL/Mp-Faslpr Mice

Fujita. Y., Fujii. T., Mimori. T., Sato. T., Nakamura. T., Iwao. H., Nakajima A., Miki. M., Sakai. T., Kawanami. T., Tanaka. M., Masaki. Y., Fukushima. T., Okazaki. T. and Umehara. H.

The Journal of Immunology, Vol.192(3), p979-984, Feb. 2014.

[5]

Autoimmune disorder phenotypes in Hvcn1-deficient mice

Sasaki. M., Tojo. A., Okochi. Y., Miyawaki. N., Kamimura. D., Yamaguchi. A., Murakami. M., and Okamura. Y.

Biochem. J. Vol.450(2), p295-301, Mar. 2013.

[6]

Overexpression of Epstein-Barr virus-induced gene 3 protein (EBI3) in MRL/lpr mice suppresses their lupus nephritis by activating regulatory T cells

Nishimura Shinsuke and Inoue Hiroshi.

Autoimmunity, 2013.

[7]

Suppression of glomerulonephritis in lupus prone NZB/W mice by RN486, a selective inhibitor of Bruton's Tyrosine Kinase

P.Mina-Osorio, J.LaStant, N.Keirstead, T.Whittard, J.Ayala, S.Stefanova, R. Garrido, N. Dimaano, H. Hilton, M. Giron, K.-Y.Lau, J.Hang, J.Postelnek,Y.Kim, S.Min, A. Patel, J.Woods, M.Ramanujam, J.DeMartino, S.Narula, D.Xu.

Arthritis & Rheumatism, 2013.

[8]

Galectin-9 Ameliorates Clinical Severity of MRL/lpr Lupus-Prone Mice by Inducing Plasma Cell Apoptosis Independently of Tim-3

M.Moritoki, T.Kadowaki, T.Niki, D.Nakano, G.Soma, H.Mori, H.Kobara, T.Masaki, M.Kohno,   M.Hirashima.

PLOS one, 2013.

[9]

Runx1 Deficiency in CD4+ T Cells Causes Fatal Autoimmune Inflammatory Lung Disease Due to Spontaneous Hyperactivation of Cells 

W.F.Wong, K.Kohu, A.Nakamura, M.Ebina, T.Kikuchi, R.Tazawa, K.Tanaka, S.Kon, T.Funaki,   A.Sugahara-Tobinai, C.Y.Looi, S.Endo, R.Funayama,M.Kurokawa, S.Habu, N.Ishii, M.Fukumoto, K.Nakata, T.Takai and M.Satake

The Journal of Immunology, Vol.188(11), p5408-5420, Jun 2012.

[10]

Dendritic Cell-Specific Ablation of the Protein Tyrosine Phosphatase Shp1 Promotes Th1 Cell Differentiation and Induces Autoimmunity

T.Kaneko, Y.Saito, T.Kotani, H.Okazawa, H.Iwamura, M.Sato-Hashimoto, Y.Kanazawa, S.Takahashi, K.Hiromura, S.Kusakari, Y.Kaneko, Y.Murata,H.Ohnishi, Y. Nojima,   K.Takagishi and T. Matozaki

The Journal of Immunology, Vol.188(11), p5397-5407, Jun 2012.

[11]

Autoimmune disorder phenotypes in Hvcn1-deficient mice

Sasaki M, Tojo A, Okochi Y, Miyawaki N, Kamimura D, Yamaguchi A, Murakami M and Okamura Y.

Biochem. J. Vol.450, p295-301, 2013.

[12]

Eradication of Metastatic Renal Cell Carcinoma after Adenovirus-Encoded TNF-Related Apoptosis-Inducing Ligand (TRAIL)/CpG Immunotherapy

L.   A. Norian., T. P. Kresowik., H. M. Rosevear., B. R. James., T. R. Rosean., A. J. Lightfoot., T. A. Kucaba., C. Schwarz., C. J. Weydert., M. D. Henry., T. S. Griffith.

PLos One 7(2):e31085. 2012

[13]

Reversal of serologic, immunologic, and histologic dysfunction in mice with systemic lupus erythematosus by long-term serial adipose tissue-derived mesenchymal stem cell transplantation

E.W. Choi., Il S. Shin., S. Y. Park., J. H. Park., J. S. Kim., E. J. Yoon., S. K. Kang., J. C. Ra., S. H. Hong.

Arthritis & Rheumatism Vol. 64, Issue 1, pages 243-253, 2012

[14]

Serum soluble MD-1 levels increase with disease progression in autoimmune prone MRLlpr/lpr mice

S. Sasakia., Y. Nagaia., T. Yanagibashia., Y. Watanabea., M. Ikutania., A. Kariyonea., K. Tsuneyamab., Y. Hiraia., K. Takatsua.

Molecular Immunology Vol.49,Issue4,611-620, 2012

[16]

Deamidation of Gliadin Peptides in Lamina Propria: Implications for Celiac Disease

H. Skovbjerg., D. Anthonsen., E. Knudsen. and H. Sjostrom.

J of Clinical Immunology Vol.31 ( 6) 1038-1044 , 2011

[17]

Transgenic Mice that Overexpress Human IL-15 in Enterocytes Recapitulate Both B and T Cell-Mediated Pathologic Manifestations of Celiac Disease

S. Yokoyama., K. Takada., M. Hirasawa., L. P. Perera., and T. Hiroi.

J of Clinical Immunology Vol. 31,(6) , 2011

[18]

Coincidence of autoantibody production with the activation of natural killer T cells in a-galactosylceramide-mediated hepatic injury

H. Matsumoto., T. Kawamura., T. Kobayashi., Y. Kanda., H. Kawamura., T. Abo.

Immunology Vol. 133, Issue 1, pages 21-28, 2011

[19]

Lack of B and T lymphocyte attenuator exacerbates autoimmune disorders and induces Fas-independent liver injury in MRL-lpr/lpr mice

Y. Oya., N. Watanabe. Y. Kobayashi., T. Owada., M. Oki., K. Ikeda. A. Suto., S. Kagami., K. Hirose., T. Kishimoto., and H. Nakajima.

Int. Immunol 23 (5): 335-344, 2011

[20]

Amelioration of systemic lupus erythematosus by withangulatin A in MRL/lpr mice

L. Sun., L. Zhou., M. Chen., R. Zhong., J. Liu.

Journal of Cellular Biochemistry Vol. 112, Issue 9, pages 2376-2382, 2011

[21]

Co-appearance of autoantibody-producing B220low B cells with NKT cells in the course of hepatic injury

Y. Fujii., H. Kawamura., T. Kawamura., Y. Kanda.,H. Matsumoto., T. Kobayashi., T. Yamamoto., T. Aoyama., T. Abo.

Cellular Immunology Vol.260,Issue2, 105-112, 2010

[22]

Identification and characterization of autoantibody-producing B220low B (B-1) cells appearing in malarial infection

Y. Kanda., H. Kawamura., H. Matsumoto., T. Kobayashi., T. Kawamura., T. Abo.

Cellular Immunology Vol.263,Issue1, 49-54, 2010

[23]

Transplantation of umbilical cord mesenchymal stem cells alleviates lupus nephritis in MRL/lpr mice

Z. Gu., K. Akiyama., X. Ma., H. Zhang., X. Feng., G. Yao., Y. Hou., L. Lu., GS. Gilkeson., RM. Silver., X. Zeng., S. Shi., L. Sun

Lupus Vol.19 No.13, 1502-1514, 2010

[24]

Augmented TLR9-induced Btk activation in PIR-B-deficient B-1 cells provokes excessive autoantibody production and autoimmunity

T. Kubo., Y. Uchida., Y. Watanabe., M. Abe., A. Nakamura., M. Ono., S. Akira., and T. Takai.

J of Experimental Medicine Vol.206 No.9 1971-1982, 2009

[25]

Deficiency in EBV-induced gene 3 (EBI3) in MRL/ lpr mice results in pathological alteration of autoimmune glomerulonephritis and sialadenitis

T. Igawa., H. Nakashima., A. Sadanaga., K. Masutani., K. Miyake., S. Shimizu., A. Takeda., S. Hamano., and H. Yoshida.

Modern Rheumatology Vol. 19, Number 1, 33-41, 2009

[26]

Oncostatin M deficiency leads to thymic hypoplasia, accumulation of apoptotic thymocytes and glomerulonephritis

E. Esashi1., H. Ito., K. Minehata., S. Saito., Y. Morikawa., A. Miyajima.

European Journal of Immunology Vol.39,Issue6, 1664-1670, 2009

[27]

Amelioration of human lupus-like phenotypes in MRL/lpr mice by overexpression of interleukin 27 receptor a (WSX-1)

N. Sugiyama., H. Nakashima., T. Yoshimura., A. Sadanaga., S. Shimizu., K. Masutani., T. Igawa., M. Akahoshi., K. Miyake., A. Takeda., A. Yoshimura., S. Hamano., H. Yoshida.

Ann Rheum Dis 67:1461-1467, 2008

[28]

Development of autoantibody responses in NC/Nga mice: its prevention by pulverized konjac glucomannan feeding

N. Onishi., S. Kawamoto., H. Suzuki., M. Hide., and K. Ono.

Archives of Dermatological Research Vol.300, 95-99, 2008

[29]

CD19 Regulates Skin and Lung Fibrosis via Toll-Like Receptor Signaling in a Model of Bleomycin-Induced Scleroderma

A. Yoshizaki., Y. Iwata., K. Komura., F. Ogawa., T. Hara., E. Muroi., M. Takenaka., K. Shimizu., M. Hasegawa., M. Fujimoto., T. F. Tedder., and S. Sato.

Am J Pathol. 172(6): 1650-1663, 2008

[30]

Protection against autoimmune nephritis in MyD88-deficient MRL/lpr mice

A. Sadanaga., H. Nakashima., M. Akahoshi., K. Masutani., K. Miyake., T. Igawa., N. Sugiyama., H. Niiro., M. Harada.

Arthritis & Rheumatism Vol.56, Issue 5, pages 1618-1628, 2007

[31]

Chronic polyarthritis caused by mammalian DNA that escapes from degradation in macrophages.

Kawane, K., Ohtani, M., Miwa, K., Kizawa, T., Kanbara, Y., Yoshioka, Y., and Yoshikawa, H.

Nature 443: 998-1002, 2006

[32]

Altered cytokine expression in mesenteric lymph nodes in a rat strain (Matsumoto Eosinophilic Shinshu) that spontaneously develops hypereosinophilia

S. Muto., M. Monnai., Y. Okuhara., M. Murakami., J. Kuroda., T. Ono., K. Matsumoto.

Immunology Vol. 116, Issue 3, pages 373-380, 2005

[33]

Amelioration of autoimmune nephritis by imatinib in MRL/lpr mice

Sadanaga, A., Nakashima, H., Masutani, K., Miyake, K., shimizu, S., Igawa, T., Sugiyama, N., Niiro, H., Hirakata, H., and Harada, M.

Arthritis Rheumatism 52: 3987-3996, 2005

[34]

Membranous glomerulonephritis development with Th2-type immune deviations in MRL/lpr mice deficient for IL-27 receptor (WSX-1)

Shimizu, S., Sugiyama, N., Matsutani, K., Sadanaga, A., Miyazaki, Y., Inoue, Y., Akaboshi, M., Katafuchi, R., Hirakata, H., Harada. M., Hamano, S., Nakashima, H., and Yoshida, H.

J Immunol 175:7185-7192, 2005

[35]

Glucose intolerance in young TallyHo mice is induced by leptin-mediated inhibition of insulin.

Sung, Y.Y., Lee, Y.S., Jung, W.H., Kim, H.Y., Cheon, H.G., Yang, S.D., and Rhee, S.D.

Biochem Biopys Res Commun. 338: 1779-1787, 2005

[36]

Requirement for CD100-CD72 interactions in fine-tubing of B-cell antigen receptor signaling and homeostatic maintenance ofthe B-cell compartment.

Kumanogoh, A., Shikina, T., Watanabe, C., Takegahara, N., Suzuki, K., Yamamoto, M., Takamatsu, H., Prasad, D.V.R., Mizui, M., Toyohuku, T., Tamaru, M., Watanabe, D., Parnes, J.R., and Kikutani, H.

International Immuno, 17: 1277-1282, 2005

[37]

Chemical induction of HO-1 suppresses lupus nephritis by reducing local iNOS expression and synthesis of anti-dsDNA antibody.

Takeda, Y., Takeno, M., Iwasaki, M., Kobayashi, H., Kirino, Y., Ueda, A., Nagahama, K., Aoki, I., and Ishigatsubo, Y

Clin Exp Immunol. 138:237-244, 2004

[38]

The point mutation of tyrosine 759 of the IL-6 family cytokine receptor gp130 synergizes with HTLV-1 pX in promoting rheumatoid arthritis-like arthritis.

Ishihara, K., Sawa, S., Ikushima, H., Hirota, S., Atsumi, T., Kamimura, D., Park, S.J., Murakami, M., Kitanuma, Y., Iwakura, Y., and Hirano, T.

International Immunol. 16: 455-465, 2004

[39]

Inadequate induction of suppressor of cytokine signaling-1 causes systemic autoimmune disease

Fujimoto, M., Tsutsui, H., Xinshou, O., Tokumoto, M., Watanabe, D., Shima, Y., Yoshimoto, T., Hirakata, H., Kawase, I., Nakanishi, K., Kishimoto, T., and Naka, T.

International Immunol. 16: 303-314, 2004

[40]

Suppressor of cytokine signaling-1 is essential for suppressing dendritic cell activation and systemic autoimmunity.

Hanada, T., Yoshida, H., Kato, S., Tanaka, K., Matsutani, K., Tsukada, J., Nomura, Y., Mimata, H., Kubo, M., and Yoshimura, A.
Immunity: 19: 437-450, 2003

[41]

Association of Cathepsin E Deficiency with Development of Atopic Dermatitis

Tsukuba et al.

J Biochem (Tokyo). 134: 893-902, 2003

[42]

Fc RIIB deficiency with Fas mutation is sufficient for the development of systemic autoimmune disease.

Yajima, K., Nakamura, A., Sugahara, A., and Takai, T.

Eur J Immunol, 33:(4) 1020-1029, 2003 

[43]

A Point Mutation of Tyr-759 in Interleukin 6 Family Cytokine Receptor Subunit gp130 Causes Autoimmune Arthritis

T. Atsumi., K. Ishihara., D. Kamimura., H. Ikushima., T. Ohtani., S. Hirota., H. Kobayashi., S. Park., Y. Saeki., Y. Kitamura. and T. Hirano

J Exp Med, 196, Number 7, 979-990, 2002

[44]

A novel assay kits for autoantibodies rate on spontaneous autoimmune model mice.

Kikukawa, T, Kojima, M., and Abe, C.

Jap J Inflammation 20: 697-701, 2000


产品列表

产品编号 产品名称 产品规格 产品等级 备注
631-02699 LBIS® Mouse Anti-dsDNA ELISA Kit
LBIS® 抗dsDNA-小鼠ELISA试剂盒
96 tests

免责声明

1. 本公司密切关注本网站发布的内容,但不保证发布内容的准确性、完整性、可靠性和最新性等。

2. 本公司不保证使用本网站期间不会出现故障或计算机病毒污染的风险。

3. 无论何种原因,使用本网站时给用户或第三方造成的任何不利或损害,本公司概不负责。此外,对于用户与其他用户或第三方之间因本网站发生的任何交易、通讯

3. 纠纷,本公司概不负责。

4. 本网站可提供的所有产品和服务均不得用于人体或动物的临床诊断或治疗,仅可用于科研等非医疗目的。如任何用户将本网站提供的产品和服务用临床诊断或治

4. 疗,以及他特定的用途或行为,本公司概不保证其安全性和有效性,并且不负任何相关的法律责任。

LBIS® 抗dsDNA抗体检测用ELISA Kit LBIS® 自我免疫疾病 肾病研究

产品中心 > 生命科学 > 疾病研究 > 感染&自身免疫疾病

LBIS® 抗dsDNA抗体检测用ELISA Kit
LBIS® 自我免疫疾病 肾病研究

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

自我免疫疾病 肾病研究LBIS® 抗dsDNA抗体检测用ELISA Kit                              LBIS® 自我免疫疾病 肾病研究

抗 dsDNA 抗体检测用 ELISA Kit

■ LBIS® Anti dsDNA-Mouse ELISA Kit

■ LBIS® Anti ssDNA-Mouse ELISA Kit

■ LBIS® Rheumatoid Factor IgG-Mouse ELISA Kit

■ LBIS® Rheumatoid Factor IgM-Mouse ELISA Kit

 


◆特点

 

● 短时间测定

● 微量样品(稀释样品)可测

● 使用对环境无害的防腐剂

● 全部试剂均为液体,可直接使用

● 精密的测定精度和高再现性

● 标准曲线范围:15.6~1,000 mU/mL

 

 

◆精度测试

 

● 组内变异:平均 C.V.值 10% 以下

● 组间变异:平均 C.V.值 10% 以下

 

 

◆样品:血清或血浆

 

● 含抗 dsDNA 和抗 ssDNA 的血浆采血是不可使用肝素

● 用本品配备的缓冲液稀释检体,稀释范围如下:

      稀释倍数: 51 倍、101 倍、201~

LBIS® 抗dsDNA抗体检测用ELISA Kit                              LBIS® 自我免疫疾病 肾病研究

MRL/lpr产生抗体随时间的变化

MRL/lpr 小鼠(n=7)

随着时间的推移,测量血清抗体 MRL/lpr 小鼠(n=7)的值。

测试值为平均值±标准偏差值,随着年龄增加,自身抗体增加。

 

治疗实验与 MRL/lpr 20 周龄相比较 IgG-RF 抗体,IgM-RF 抗体,抗 ssDNA 抗体值有意的受到抑制。(*p<0.05)



产品列表

产品编号 产品名称 产品规格 产品等级 备注
637-02691 (AKRDD-061)LBIS® Anti dsDNA-Mouse ELISA Kit 96 tests
630-02701 (AKRSD-051)LBIS® Anti ssDNA-Mouse ELISA Kit 96tests
633-02671 (AKRRG-101)LBIS® Rheumatoid Factor IgG-Mouse ELISA Kit 96tests
630-02681 (AKRRG-111)LBIS® Rheumatoid Factor IgM-Mouse ELISA Kit 96tests
639-02891 (AKRIE-010)LBIS® IgE Mouse ELISA Kit 96 tests
632-04341 (AKRIE-011)LBIS® IgE Rat ELISA Kit 96 tests

免责声明

1. 本公司密切关注本网站发布的内容,但不保证发布内容的准确性、完整性、可靠性和最新性等。

2. 本公司不保证使用本网站期间不会出现故障或计算机病毒污染的风险。

3. 无论何种原因,使用本网站时给用户或第三方造成的任何不利或损害,本公司概不负责。此外,对于用户与其他用户或第三方之间因本网站发生的任何交易、通讯

3. 纠纷,本公司概不负责。

4. 本网站可提供的所有产品和服务均不得用于人体或动物的临床诊断或治疗,仅可用于科研等非医疗目的。如任何用户将本网站提供的产品和服务用临床诊断或治

4. 疗,以及他特定的用途或行为,本公司概不保证其安全性和有效性,并且不负任何相关的法律责任。

LBIS® 小鼠胰岛素 ELISA 试剂盒(T 型) LBIS® Insulin-Mouse-T

产品中心 > 生命科学 > 疾病研究 > 代谢&糖尿病&肥胖症

LBIS® 小鼠胰岛素 ELISA 试剂盒(T 型)
LBIS® Insulin-Mouse-T

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

LBIS® Insulin-Mouse-TLBIS® 小鼠胰岛素 ELISA 试剂盒(T 型)                              LBIS® Insulin-Mouse-T

LBIS® 小鼠胰岛素 ELISA 试剂盒(T 型)

LBIS® 小鼠胰岛素 ELISA 试剂盒(T 型)                              LBIS® Insulin-Mouse-T

  

胰岛素是由胰脏内的胰岛β细胞分泌,分子量约 5800,等电点在 5.4 左右的一种蛋白质激素。

  A6-A11、A7-B7、A20-B-19 之间形成二硫键,在酸性溶液或者不含 Zn 离子的中性水溶液中形成二聚体,在含锌离子的中性溶液中,则形成含2个 Zn 离子的六聚体。

肝脏、肌肉、脂肪组织是主要的靶组织,分别有以下的作用。

肝脏:促进糖原、蛋白质、脂肪酸合成、促进糖类的摄取和利用、抑制糖异生。

肌肉:糖类、氨基酸、K细胞膜通透性增大、促进糖原、蛋白质的合成、抑制蛋白质分解。

脂肪组织:葡萄糖细胞膜通透性增大、促进脂肪酸的合成。

胰岛素是细胞内的合成单链胰岛素原通过二硫键结合一起形成的。在酶分解作用下被激活,C肽和胰岛素分离。

◆特点

● 短时间测定(总的反应时间:3小时)

● 微量样品(标准操作:10 μL)可测

● 使用对环境无害的防腐剂

● 全部试剂均为液体,可直接使用

● 精密的测定精度和高再现性

● 操作简便,不需要特别的预处理

● 有效期限为 12 个月

◆构成

组成部分

状态

容量

(A) 抗体固相化 96孔板

洗净后使用

96 wells(8×12)/1 块

(B) 胰岛素标准溶液(小鼠)(200 ng/mL)

稀释后使用

25 μL/1 瓶

(C) 缓冲液

即用

60 mL/1 瓶

(D) 生物素结合抗胰岛素抗体

稀释后使用

10 μL/1 瓶

(E) 过氧化物・抗生物素蛋白结合物

稀释后使用

20 μL/1 瓶

(F) 显色液(TMB)

即用

12 mL/1 瓶

(H) 反应终止液(1M   H2SO4)※小心轻放

即用

12 mL/1 瓶

( I ) 浓缩洗净液(10×)

稀释后使用

100 mL/1 瓶

封板膜

3 张

使用说明书

1 份

◆样品信息

小鼠的血清、血浆、培养液

10 μL/well(标准操作)

※血浆采血建议使用肝素处理血液

 

◆测量范围

0.156~10 ng/mL(标准曲线范围)

◆Validation data

精度测试(组内变异)

样品

A

B

C

D

mean

0.882

1.15

3.67

5.25

SD

0.0245

0.0213

0.0649

0.0792

CV(%)

2.78

1.87

1.77

1.51

单位:ng/mL n=10

 

重复性测试(组间变异)

测量日/样品

E

F

G

第0天

5.253

1.224

0.513

第1天

5.322

1.312

0.523

第2天

5.365

1.269

0.512

第3天

5.362

1.281

0.535

mean

5.326

1.272

0.521

SD

0.0520

0.0366

0.0109

CV(%)

3.31

3.76

4.65

单位:ng/mL n=3

 

加标回收测试

 

样品H

添加量

实测值

回收量

回收率(%)

0

1.350

0.25

1.593

0.243

97.2

0.50

1.841

0.491

98.2

0.75

2.065

0.715

95.3

1.00

2.299

0.949

94.9

单位:ng/mL n=3

 

样品I

添加量

实测值

回收量

回收率(%)

0

1.941

0.50

2.496

0.505

101

0.75

2.728

0.737

98.3

1.00

2.955

0.964

96.4

1.50

3.431

1.440

96.0

单位:ng/mL n=3

 

稀释直线性测试

 

用稀释缓冲液分3次连续稀释3个血清样品的测量结果,直线回归方程的 R2在 0.993~0.999 之间。

参考文献



 1.

Endoplasmic Reticulum Stress in Mice Increases Hepatic Expression of Genes Carrying a Premature Termination Codon via a Nutritional Status-Independent GRP78-Dependent Mechanism.Harada N, Okuyama M, Yoshikatsu A, Yamamoto H, Ishiwata S, Hamada C, Hirose T, Shono M, Kuroda M, Tsutsumi R, Takeo J, Taketani Y, Nakaya Y, Sakaue H.J Cell Biochem. 2017 Nov;118(11):3810-3824.


 2.

Effects of β-Glucan Content and Pearling of Barley in Diet-Induced Obese MiceSeiichiro Aoe, Yasunori Ichinose, Noriko Kohyama, Kozo Komae, Asuka Takahashi, Toji Yoshioka, and Takashi Yanagisawa.Posted online on 27 Sep 2017. https://doi.org/10.1094/CCHEM-04-17-0083-R

 3.

10-Hydroxy-2-decenoic acid, a natural product, improves hyperglycemia and insulin resistance in obese/diabetic KK-Ay mice, but does not prevent obesity Risa WATADANI, Jun KOTOH, Daiki SASAKI, Azusa SOMEYA, Kozo MATSUMOTO, Akihiko MAEDA Journal of Veterinary Medical Science, Vol. 79 (2017) No. 9 Sept, p.1596-1602


 4.

S-Equol Activates cAMP Signaling at the Plasma Membrane of INS-1 Pancreatic β-Cells and Protects against Streptozotocin-Induced Hyperglycemia by Increasing β-Cell Function in Male Mice. Horiuchi H, Usami A, Shirai R, Harada N, Ikushiro S, Sakaki T, Nakano Y, Inui H, Yamaji R. J Nutr. 2017 Sep;147(9):1631-1639.


 5.

Pathological and gene expression analysis of a polygenic diabetes model, NONcNZO10/LtJ mice. Hirata T, Yoshitomi T, Inoue M, Iigo Y, Matsumoto K, Kubota K, Shinagawa A. Gene. 2017 Sep 20;629:52-58.


 6.

Suppression of GRK2 expression reduces endothelial dysfunction by restoring glucose homeostasis. Taguchi K, Hida M, Hasegawa M, Narimatsu H, Matsumoto T, Kobayashi T. Sci Rep. 2017 Aug 16;7(1):8436.


 7.

Gender difference in NASH susceptibility: Roles of hepatocyte Ikkβ and Sult1e1. Matsushita N, Hassanein MT, Martinez-Clemente M, Lazaro R, French SW, Xie W, Lai K, Karin M, Tsukamoto H. PLoS One. 2017 Aug 10;12(8):e0181052.


 8.

Intake of mulberry 1-deoxynojirimycin prevents colorectal cancer in mice. E S, Yamamoto K, Sakamoto Y, Mizowaki Y, Iwagaki Y, Kimura T, Nakagawa K, Miyazawa T, Tsuduki T. J Clin Biochem Nutr. 2017 Jul;61(1):47-52.


 9.

Sake lees extract improves hepatic lipid accumulation in high fat diet-fed mice. Kubo H, Hoshi M, Matsumoto T, Irie M, Oura S, Tsutsumi H, Hata Y, Yamamoto Y, Saito K Lipids Health Dis. 2017 Jun 3;16(1):106.


10.

Moringa oleifera from Cambodia Ameliorates Oxidative Stress, Hyperglycemia, and Kidney Dysfunction in Type 2 Diabetic Mice. Tang Y, Choi EJ, Han WC, Oh M, Kim J, Hwang JY, Park PJ, Moon SH, Kim YS, Kim EK. J Med Food. 2017 May;20(5):502-510.


11.

4μ8C Inhibits Insulin Secretion Independent of IRE1α RNase Activity. Sato H, Shiba Y, Tsuchiya Y, Saito M, Kohno K. Cell Struct Funct. 2017 May 3;42(1):61-70


12.

Inhibition of Gastric Inhibitory Polypeptide Receptor Signaling in Adipose Tissue Reduces Insulin Resistance and Hepatic Steatosis in High-Fat Diet-Fed Mice. Joo E, Harada N, Yamane S, Fukushima T, Taura D, Iwasaki K, Sankoda A, Shibue K, Harada T, Suzuki K, Hamasaki A, Inagaki N. Diabetes. 2017 Apr;66(4):868-879.


13.

Prevention and treatment effect of evogliptin on hepatic steatosis in high-fat-fed animal models. Kim MK, Chae YN, Ahn GJ, Shin CY, Choi SH, Yang EK, Sohn YS, Son MH Arch Pharm Res. 2017 Feb;40(2):268-281.


14.

Royal jelly improves hyperglycemia in obese/diabetic KK-Ay mice. Mei YOSHIDA, Kaori HAYASHI,  Risa WATADANI,  Yoshiyasu OKANO, Keiya TANIMURA, Jun KOTOH, Daiki SASAKI,  Kozo MATSUMOTO,  Akihiko MAEDA Journal of Veterinary Medical Science, Vol. 79 (2017)  No. 2 February p. 299-307


15.

PDK1-FoxO1 pathway in AgRP neurons of arcuate nucleus promotes bone formation via GHRH-GH-IGF1 axis. Sasanuma H, Nakata M, Parmila K, Nakae J, Yada T. Mol Metab. 2017 Feb 17;6(5):428-439.


16.

Soy Protein Isolate Suppresses Lipodystrophy-induced Hepatic Lipid Accumulation in Model Mice. Nagao K, Matsumoto A, Kai S, Kayashima T, Yanagita T. J Oleo Sci. 2017 Feb 1;66(2):161-169.


17.

A high-fat diet temporarily renders Sod1-deficient mice resistant to an oxidative insult.

Ito J, Ishii N, Akihara R, Lee J, Kurahashi T, Homma T, Kawasaki R, Fujii J J Nutr Biochem. 2017 Feb;40:44-52.


18.

Macrophage ubiquitin-specific protease 2 modifies insulin sensitivity in obese mice. Saito N, Kimura S, Miyamoto T, Fukushima S, Amagasa M, Shimamoto Y, Nishioka C, Okamoto S, Toda C, Washio K, Asano A, Miyoshi I, Takahashi E, Kitamura H. Biochem Biophys Rep. 2017 Jan 26;9:322-329.


19.

Dietary Mung Bean Protein Reduces Hepatic Steatosis, Fibrosis, and Inflammation in Male Mice with Diet-Induced, Nonalcoholic Fatty Liver Disease. Watanabe H, Inaba Y, Kimura K, Asahara SI, Kido Y, Matsumoto M, Motoyama T, Tachibana N, Kaneko S, Kohno M, Inoue H. J Nutr. 2017 Jan;147(1):52-60.


20.

BCL11B gene heterozygosity causes weight loss accompanied by increased energy consumption, but not defective adipogenesis, in mice Jun Inoue, Yusuke Ihara, Daisuke Tsukamoto, Keisuke Yasumoto, Tsutomu Hashidume, Kenya Kamimura, Shigeki Hirano, Makoto Shimizu, Ryo Kominami & Ryuichiro Sato Bioscience, Biotechnology, and Biochemistry, Vol.81, 2017,Issue 5, p922-930


21.

Macrophage ubiquitin-specific protease 2 modifies insulin sensitivity in obese mice. Natsuko Saitoa,Shunsuke Kimurac,Tomomi Miyamotod,Sanae Fukushimae,Misato Amagasaa,Yoshinori Shimamotob, Chieko Nishiokae,Shiki Okamotof,Chitoku Todag,Kohei Washioa,Atsushi Asanoh,Ichiro Miyoshid,Eiki Takahashie,Hiroshi Kitamura Biochemistry and Biophysics ReportsVolume 9, March 2017, Pages 322-329


22.

Agmatine ameliorates type 2 diabetes induced-Alzheimer’s disease-like alterations in high-fat diet-fed mice via reactivation of blunted insulin signalling. Kang S, Kim CH, Jung H, Kim E, Song HT, Lee JE. Neuropharmacology. 2017 Feb;113(Pt A):467-479


23.

Dietary nitrite reverses features of postmenopausal metabolic syndrome induced by high fat diet and ovariectomy in mice. Ohtake K, Ehara N, Chiba H, Nakano G, Sonoda K, Ito J, Uchida H, Kobayashi J. Am J Physiol Endocrinol Metab. 2017 Feb 14


24.

A high-fat diet temporarily renders Sod1-deficient mice resistant to an oxidative insult. Ito J, Ishii N, Akihara R, Lee J, Kurahashi T, Homma T, Kawasaki R, Fujii J. J Nutr Biochem. 2017 Feb;40:44-52.


25.

Inhibition of Gastric Inhibitory Polypeptide Receptor Signaling in Adipose Tissue Reduces Insulin Resistance and Hepatic Steatosis in High Fat Diet-Fed Mice. Joo E, Harada N, Yamane S, Fukushima T, Taura D, Iwasaki K, Sankoda A, Shibue K, Harada T, Suzuki K, Hamasaki A, Inagaki N. Diabetes. 2017 Jan 17.


26.

BCL11B gene heterozygosity causes weight loss accompanied by increased energy consumption, but not defective adipogenesis, in mice. Inoue J, Ihara Y, Tsukamoto D, Yasumoto K, Hashidume T, Kamimura K, Hirano S, Shimizu M, Kominami R, Sato R. Biosci Biotechnol Biochem. 2017 Jan 9:1-9.


27.

Attenuated secretion of glucose-dependent insulinotropic polypeptide (GIP) does not alleviate hyperphagic obesity and insulin resistance in ob/ob mice. Satoko Shimazu-Kuwahara,Norio Harada,Shunsuke Yamane,Erina Joo,Akiko Sankoda,Timothy J. Kieffer,Nobuya Inagaki. Molecular Metabolism,Available online 19 January 2017


28.

Dietary Mung Bean Protein Reduces Hepatic Steatosis, Fibrosis, and Inflammation in Male Mice with Diet-Induced, Nonalcoholic Fatty Liver Disease. Watanabe H, Inaba Y, Kimura K, Asahara SI, Kido Y, Matsumoto M, Motoyama T, Tachibana N, Kaneko S, Kohno M, Inoue H. J Nutr. 2017 Jan;147(1):52-60.


29.

Germinated Pigmented Rice (Oryza Sativa L. cv. Superhongmi) Improves Glucose and Bone Metabolisms in Ovariectomized Rats. Chung SI, Ryu SN, Kang MY. Nutrients. 2016 Oct 21;8(10).


30.

Angiopoietin-like peptide 4 regulates insulin secretion and islet morphology. Kim HK, Kwon O, Park KH, Lee KJ, Youn BS, Kim SW, Kim MS. Biochem Biophys Res Commun. 2017 Feb 7


31.

Ubc13 haploinsufficiency protects against age-related insulin resistance and high-fat diet-induced obesity. Joo E, Fukushima T, Harada N, Reed JC, Matsuzawa SI, Inagaki N. Sci Rep. 2016 Oct 31;6:35983.


32.

Procyanidin Promotes Translocation of Glucose Transporter 4 in Muscle of Mice through Activation of Insulin and AMPK Signaling Pathways. Yamashita Y, Wang L, Nanba F, Ito C, Toda T, Ashida H. PLoS One. 2016 Sep 6;11(9):e0161704


33.

Oxytocin Protects against Stress-Induced Cell Death in Murine Pancreatic β-Cells. Watanabe S, Wei FY, Matsunaga T, Matsunaga N, Kaitsuka T, Tomizawa K. Sci Rep. 2016 May 4;6:25185.


34.

Loss of circadian rhythm of circulating insulin concentration induced by high-fat diet intake is associated with disrupted rhythmic expression of circadian clock genes in the liver. Honma K, Hikosaka M, Mochizuki K, Goda T. Metabolism. 2016 Apr;65(4):482-91


35.

Sodium alginate prevents progression of non-alcoholic steatohepatitis and liver carcinogenesis in obese and diabetic mice. Miyazaki T, Shirakami Y, Kubota M, Ideta T, Kochi T, Sakai H, Tanaka T, Moriwaki H, Shimizu M. Oncotarget. 2016 Mar 1;7(9):10448-58.


36.

Obesity-induced DNA released from adipocytes stimulates chronic adipose tissue inflammation and insulin resistance. Nishimoto S, Fukuda D, Higashikuni Y, Tanaka K, Hirata Y, Murata C, Kim-Kaneyama JR, Sato F, Bando M, Yagi S, Soeki T, Hayashi T, Imoto I, Sakaue H, Shimabukuro M, Sata M. Sci Adv. 2016 Mar 25;2(3):e1501332


37.

Fatty Liver and Insulin Resistance in the Liver-Specific Knockout Mice of Mitogen Inducible Gene-6. Park BK, Lee EA, Kim HY, Lee JC, Kim KS, Jeong WH, Kim KY, Ku BJ, Rhee SD. J Diabetes Res. 2016;2016:1632061


38.

Reactive sulfur species regulate tRNA methylthiolation and contribute to insulin secretion. Takahashi N, Wei FY, Watanabe S, Hirayama M, Ohuchi Y, Fujimura A, Kaitsuka T, Ishii I, Sawa T, Nakayama H, Akaike T, Tomizawa K.


39.

Effects of caloric restriction on O-GlcNAcylation, Ca(2+) signaling, and learning impairment in the hippocampus of ob/ob mice. Jeon BT, Heo RW, Jeong EA, Yi CO, Lee JY, Kim KE, Kim H, Roh GS. Neurobiol Aging. 2016 Aug;44:127-37.


40.

Chronic Repression of mTOR Complex 2 Induces Changes in the Gut Microbiota of Diet-induced Obese Mice. Jung MJ, Lee J, Shin NR, Kim MS, Hyun DW, Yun JH, Kim PS, Whon TW, Bae JW. Sci Rep. 2016 Jul 29;6:30887.


41.

Single ingestion of soy β-conglycinin induces increased postprandial circulating FGF21 levels exerting beneficial health effects. Hashidume T, Kato A, Tanaka T, Miyoshi S, Itoh N, Nakata R, Inoue H, Oikawa A, Nakai Y, Shimizu M, Inoue J, Sato R. Sci Rep. 2016 Jun 17;6:28183.


42.

Paraventricular NUCB2/Nesfatin-1 Supports Oxytocin and Vasopressin Neurons to Control Feeding Behavior and Fluid Balance in Male Mice. Nakata M, Gantulga D, Santoso P, Zhang B, Masuda C, Mori M, Okada T, Yada T. Endocrinology. 2016 Jun;157(6):2322-32.


43.

Oxytocin Protects against Stress-Induced Cell Death in Murine Pancreatic β-Cells. Watanabe S, Wei FY, Matsunaga T, Matsunaga N, Kaitsuka T, Tomizawa K. Sci Rep. 2016 May 4;6:25185.


44.

Loss of circadian rhythm of circulating insulin concentration induced by high-fat diet intake is associated with disrupted rhythmic expression of circadian clock genes in the liver. Honma K, Hikosaka M, Mochizuki K, Goda T. Metabolism. 2016 Apr;65(4):482-91.


45.

Protective effect of vitamin E against alloxan-induced mouse hyperglycemia. Takemoto K, Doi W, Masuoka N. Biochim Biophys Acta. 2016 Apr;1862(4):647-50.


46.

Castration influences intestinal microflora and induces abdominal obesity in high-fat diet-fed mice. Harada N, Hanaoka R, Horiuchi H, Kitakaze T, Mitani T, Inui H, Yamaji R. Sci Rep. 2016 Mar 10;6:23001.


47.

Pharmacological Inhibition of Monoacylglycerol O-Acyltransferase 2 Improves Hyperlipidemia, Obesity, and Diabetes by Change in Intestinal Fat Utilization. Take K, Mochida T, Maki T, Satomi Y, Hirayama M, Nakakariya M, Amano N, Adachi R, Sato K, Kitazaki T, Takekawa S. PLoS One. 2016 Mar 3;11(3):e0150976.


48.

GADD34-deficient mice develop obesity, nonalcoholic fatty liver disease, hepatic carcinoma and insulin resistance Naomi Nishio and Ken-ichi Isobe Sci Rep. 2015; 5: 13519.


49.

Patterns of Brain Activation and Meal Reduction Induced by Abdominal Surgery in Mice and Modulation by Rikkunshito Lixin Wang, Sachiko Mogami, Seiichi Yakabi, Hiroshi Karasawa, Chihiro Yamada, Koji Yakabi, Tomohisa Hattori, and Yvette Taché PLoS One. 2015; 10(9): e0139325.


50.

Hot water extracts of edible Chrysanthemum morifolium Ramat. exert antidiabetic effects in obese diabetic KK-Ay mice Yamamoto J, Tadaishi M, Yamane T, Oishi Y, Shimizu M, Kobayashi-Hattoria K. Bioscience, Biotechnology, and Biochemistry, Vol.79(7), 2015.


51.

Dietary obacunone supplementation stimulates muscle hypertrophy, and suppresses hyperglycemia and obesity through the TGR5 and PPARγ pathway. Horiba T, Katsukawa M, Mita M, Sato R. Biochem Biophys Res Commun. Vol.463(4), p846-52, Aug. 2015.


52.

Hepatic STAMP2 alleviates high fat diet-induced hepatic steatosis and insulin resistance. Kim HY, Park SY, Lee MH, Rho JH, Oh YJ, Jung HU, Yoo SH, Jeong NY, Lee HJ, Suh S, Seo SY, Cheong J, Jeong JS, Yoo YH. J Hepatol. Vol.63(2), p477-85, Aug 2015.


53.

Optogenetic control of insulin secretion by pancreatic β-cells in vitro and in vivo. Kushibiki T, Okawa S, Hirasawa T, Ishihara M. Gene Ther. Vol.22(7), p553-9, Jul 2015.


54.

Preventive effects of astaxanthin on diethylnitrosamine-induced liver tumorigenesis in C57/BL/KsJ-db/db obese mice. Ohno T, Shimizu M, Shirakami Y, Miyazaki T, Ideta T, Kochi T, Kubota M, Sakai H, Tanaka T, Moriwaki H. Hepatol Res. Jul 2015


55.

Effects of liquid konjac on parameters related to obesity in diet-induced obese mice. Aoe S, Kudo H, Sakurai S. Biosci Biotechnol Biochem. Vol.79(7), p1141-6, Jul 2015.


56.

Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance via glucagon-like peptide 1 in diet-induced obesity. Hwang I, Park YJ, Kim YR, Kim YN, Ka S, Lee HY, Seong JK, Seok YJ, Kim JB. FASEB J. Vol.29(6), p2397-411, Jun 2015.


57.

PRMT4 is involved in insulin secretion via the methylation of histone H3 in pancreatic β cells. Kim JK, Lim Y, Lee JO, Lee YS, Won NH, Kim H, Kim HS. J Mol Endocrinol.Vol.54(3), p315-24, Jun 2015.


58.

Hepatic NPC1L1 overexpression ameliorates glucose metabolism in diabetic mice via suppression of gluconeogenesis. Kurano M, Hara M, Satoh H, Tsukamoto K. Metabolism. Vol.64(5), p588-96, May 2015.


59.

Chronic high intake of quercetin reduces oxidative stress and induces expression of the antioxidant enzymes in the liver and visceral adipose tissues in mice. Kobori M, Takahashi Y, Akimoto Y, Sakurai M, Matsunaga I, Nishimuro H, Ippoushi K, Oike H, Ohnishi-Kameyama M. Journal of Functional Foods, Vol.15, p551–560, May 2015.


60.

Effects of quercetin derivatives from mulberry leaves: Improved gene expression related hepatic lipid and glucose metabolism in short-term high-fat fed mice. Sun X, Yamasaki M, Katsube T, Shiwaku K. Nutr Res Pract. Vol.9(2), p137-43, Apr 2015.


61.

Insulin Release from the Beta Cells in Acatalasemic Mice Is Highly Susceptible to Alloxan-Induced Oxidative Stress. Kazunori Takemoto, Wakana Doi, Ken Kataoka, Kohji Ishihara, Da-Hong Wang., Hitoshi Sugiyama, Noriyoshi Masuoka. JDM, Vol.5 No.2, May 2015


62.

Titanium dioxide nanoparticles increase plasma glucose via reactive oxygen species-induced insulin resistance in mice. Hu H, Guo Q, Wang C, Ma X, He H, Oh Y, Feng Y, Wu Q, Gu N. J Appl Toxicol. Mar 2015 .


63.

Compensatory hyperinsulinemia in high-fat diet-induced obese mice is associated with enhanced insulin translation in islets. Kanno A, Asahara S, Masuda K, Matsuda T, Kimura-Koyanagi M, Seino S, Ogawa W, Kido Y.  Biochem Biophys Res Commun. Vol.13;458(3), p681-6. Mar 2015.


64.

Optogenetic control of insulin secretion by pancreatic β-cells in vitro and in vivo. Kushibiki T, Okawa S, Hirasawa T, Ishihara M. Gene Ther. Mar 2015.


65.

Compensatory hyperinsulinemia in high-fat diet-induced obese mice is associated with enhanced insulin translation in islets. Kanno A, Asahara S, Masuda K, Matsuda T, Kimura-Koyanagi M, Seino S, Ogawa W, Kido Y. Biochem Biophys Res Commun. Vol.458(3), p681-6, Mar 2015.


66.

Essential role of mitochondrial Ca2+ uniporter in the generation of mitochondrial pH gradient and metabolism-secretion coupling in insulin-releasing cells. Quan X, Nguyen TT, Choi SK, Xu S, Das R, Cha SK, Kim N, Han J, Wiederkehr A, Wollheim CB, Park KS. J Biol Chem. Vol.290(7), p4086-96, Feb 2015.


67.

Endogenous Interleukin 18 Suppresses Hyperglycemia and Hyperinsulinemia during the Acute Phase of Endotoxemia in Mice. Yamashita H, Aoyama-Ishikawa M, Takahara M, Yamauchi C, Inoue T, Miyoshi M, Maeshige N, Usami M, Nakao A, Kotani J. Surg Infect (Larchmt). 2015 Feb;16(1):90-6.


68.

 Hot water extracts of edible Chrysanthemum morifolium Ramat. exert antidiabetic effects in obese diabetic KK-Ay mice. Junpei Yamamoto, Miki Tadaishi, Takumi Yamane, Yuichi Oishi, Makoto Shimizu & Kazuo Kobayashi-Hattoria. Bioscience, Biotechnology, and Biochemistry, Published online: 10 Feb 2015


69.

Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance via glucagon-like peptide 1 in diet-induced obesity. Hwang I, Park YJ, Kim YR1, Kim YN, Ka S, Lee HY, Seong JK, Seok YJ, Kim JB. FASEB J. Feb 2015.


70.

Titanium dioxide nanoparticles increase plasma glucose via reactive oxygen species-induced insulin resistance in mice. Hu H, Guo Q, Wang C, Ma X, He H, Oh Y, Feng Y, Wu Q, Gu N. J Appl Toxicol. Mar 2015.


71.

Ashitaba (Angelica keiskei) extract prevents adiposity in high-fat diet-fed C57BL/6 mice. Zhang T, Yamashita Y, Yasuda M, Yamamoto N, Ashida H. Food Funct. Vol.6(1), p134-144, Jan 2015.


72.

Dietary nitrite supplementation improves insulin resistance in type 2 diabetic KKAy mice Ohtake K, Nakano G, Ehara N, Sonoda K, Ito J, Uchida H, Kobayashi J. Nitric Oxide, Vol.44, p31–38, Jan 2015.


73.

Salicornia herbacea prevents weight gain and hepatic lipid accumulation in obese ICR mice fed a high-fat diet. Pichiah PT, Cha YS. J Sci Food Agric. Dec 2014.


74.

Salacia reticulata has therapeutic effects on obesity. Shimada T, Nakayama Y, Harasawa Y, Matsui H, Kobayashi H, Sai Y, Miyamoto K, Tomatsu S, Aburada M. J Nat Med. Vol.68(4), p668-676, Oct 2014.Salicornia herbacea prevents weight gain and hepatic lipid accumulation in obese ICR mice fed a high-fat diet. Pichiah PT1, Cha YS. J Sci Food Agric. Dec 2014.


75.

Ghrelin administered spinally increases the blood glucose level in mice. Sim Y-B., Park S-H., Kim S-S., Kim C-H., Kim S-J., Lim S-M., Jung J-S., Suh H-W. Peptides, Vol.54, p162-165, Apr 2014.

76.

Chronic exposure to valproic acid promotes insulin release, reduces KATP channel current and does not affect Ca2+ signaling in mouse islets. Manaka K., Nakata M., Shimomura K., Rita RS., Maejima Y., Yoshida M., Dezaki K., Kakei M., Yada T. The Journal of Physiological Sciences, Vol.64(1), p77-83, Jan 2014.


77.

Impaired Lipid and Glucose Homeostasis in Hexabromocyclododecane-Exposed Mice Fed a High-Fat Diet. Yanagisawa R., Koike E., Win-Shwe TT., Yamamoto M. and Takano H. ENVIRONMENTAL HEALTH PERSPECTIVES, Jan 2014.


78.

Lipid-Lowering Effects of Pediococcus acidilactici M76 Isolated from Korean Traditional Makgeolli in High Fat Diet-Induced Obese Mice. Moon Y-J., Baik S-H. and Cha Y-S. Nutrients, Vol.6(3), p1016-1028, 2014.


79.

Azilsartan, an angiotensin II type 1 receptor blocker, restores endothelial function by reducing vascular inflammation and by increasing the phosphorylation ratio Ser1177/Thr497 of endothelial nitric oxide synthase in diabetic mice. Matsumoto S., Shimabukuro M., Fukuda D., Soeki T., Yamakawa K., Masuzaki H. and Sata M. Cardiovascular Diabetology, 13:30, 2014.


80.

Intake of mulberry 1-deoxynojirimycin prevents diet-induced obesity through increases in adiponectin in mice. T.Tsuduki, I.Kikuchi, T.Kimura, K.Nakagawa, T.Miyazawa. Food Chemistry, Vol.139(1-4), p16-23, Aug 2013.


81.

Chronic treatment with novel GPR40 agonists improve whole-body glucose metabolism based on the glucose-dependent insulin secretion. H.Tanaka, S.Yoshida, H.Oshima, H.Minoura, K.Negoro, T.Yamazaki, S.Sakuda, F.Iwasaki, T.Matsui and M. Shibasaki. JPET, Jul 2013.


82.

Contribution of insulin signaling to the regulation of pancreatic beta-cell mass during the catch-up growth period in a low birth weight mouse model. Y.Yoshida, M.Fuchita, M.Kimura-Koyanagi, A.Kanno, T.Matsuda, S.Asahara, N.Hashimoto, T.Isagawa, W.Ogawa, H.Aburatani, T.Noda, S.Seino, M.Kasuga, Y.Kido. Diabetology International, Jul 2013.


83.

Differential contribution of insulin and amino acids to the mTORC1-autophagy pathway in the liver and muscle. T.Naito, A.Kuma and N.Mizushima. The Journal of Biological Chemistry, Jun 2013.


84.

Apelin Inhibits Diet-Induced Obesity by Enhancing Lymphatic and Blood Vessel Integrity. M.Sawane, K.Kajiya, H.Kidoya, M.Takagi, F.Muramatsu and N.Takakura. Diabetes, Vol.62(6), p1970-1980, Jun 2013.


85.

Ras-related C3 botulinum toxin substrate 1 (RAC1) regulates glucose-stimulated insulin secretion via modulation of F-actin. S.Asahara, Y.Shibutani, K.Teruyama, H.Y.Inoue, Y.Kawada, H.Etoh, T.Matsuda, M.Kimura-Koyanagi, N.Hashimoto, M.Sakahara, W.Fujimoto, H.Takahashi, S.Ueda, T.Hosooka, T.Satoh, H.Inoue, M.Matsumoto, A.Aiba, M.Kasuga, Y.Kido. Diabetologia, Vol.56(5), p1088-1097, May 2013.


86.

Effects of hydrophilic statins on renal tubular lipid accumulation in diet-induced obese mice. K.Gotoh, T.Masaki, S.Chiba, H.Ando, K.Fujiwara, T.Shimasaki, Y.Tawara, I.Toyooka, K.Shiraishi, K.Mitsutomi, M.Anai, E.Itateyama, J.Hiraoka, K.Aoki, N.Fukunaga, T.Nawata, T.Kakuma. Obesity Research & Clinical Practice, May 2013.


87.

Amyloid-β Induces Hepatic Insulin Resistance In Vivo via JAK2. Y.Zhang, B.Zhou, B.Deng, F.Zhang, J.Wu, Y.Wang, Y.Le and Q.Zhai. Diabetes, Vol.62(4), p1159-1166, Apr 2013.


88.

Histidine augments the suppression of hepatic glucose production by central insulin action

Kimura K, Nakamura Y, Inaba Y, Matsumoto M, Kido Y, Asahara S, Matsuda T, Watanabe H, Maeda A, Inagaki F, Mukai C, Takeda K, Akira S, Ota T, Nakabayashi H, Kaneko S, Kasuga M and Inoue H.

Diabetes, Vol.62(4), p1003-1004, Apr 2013


89.

Improved transplantation outcome through delivery of DNA encoding secretion signal peptide-linked glucagon-like peptide-1 into mouse islets

Chae H Y, Lee M, Hwang H J, Kim H A, Kang J G, Kim C S, Lee S J, Ihm S-H.

Transplant International, Vol.26(4), p443-452, Apr 2013.


90.

Histidine augments the suppression of hepatic glucose production by central insulin action

K.Kimura, Y.Nakamura, Y.Inaba, M.Matsumoto, Y.Kido, S.Asahara, T.Matsuda, H.Watanabe, A.Maeda, F.Inagaki, C.Mukai, K.Takeda, S.Akira, T.Ota, H.Nakabayashi, S.Kaneko, M.Kasuga and H.Inoue. Diabetes, Mar 2013.


91.

Wogonin ameliorates hyperglycemia and dyslipidemia via PPARα activation in db/db mice without adverse side effects. Bak E-J, Kim J-H, Lee D-E, Choi Y-H, Kim J M, Woo G-H, Cha J-H, Yoo Y-J. Clinical Nutrition, Available online 26, Mar 2013.


92.

Extracellular Signal-Regulated Kinase in the Ventromedial Hypothalamus Mediates Leptin-Induced Glucose Uptake in Red-Type Skeletal Muscle. Toda C, Shiuchi T, Kageyama H, Okamoto S, Coutinho E A, Sato T, Okamatsu-Ogura Y, Yokota S, Takagi K, Tang L, Saito K, Shioda S and Minokoshi Y. Diabetes Mar 2013.


93.

Effect of vitamin E on alloxan-induced mouse diabetes. Kamimura W, Doi W, Takemoto K, Ishihara K, Wang D-H, Sugiyama H, Oda S, Masuoka N. Clinical Biochemistry, Mar 2013.


94.

Ablation of Rnf213 retards progression of diabetes in the Akita mouse. Kobayashi H, Yamazaki S, Takashima S, Liu W, Okuda H, Yan J, Fujii Y, Hitomi T, Harada K H, Habu T, Koizumi A. Biochemical and Biophysical Research Communications, Vol.432(3), p519-525, Mar 2013.

 

95.

Hypothalamic ATF3 is involved in regulating glucose and energy metabolism in mice. Lee Y-S, Sasaki T, Kobayashi M, Kikuchi O, Kim H-J, Yokota-Hashimoto H, Shimpuku M, Susanti V-Y, Ido-Kitamura Y, Kimura K, Inoue H, Tanaka-Okamoto M, Ishizaki H, Miyoshi J, Ohya S, Tanaka Y, Kitajima S, Kitamura T. Diabetologia, Mar 2013.


96.

Ras-related C3 botulinum toxin substrate 1 (RAC1) regulates glucose-stimulated insulin secretion via modulation of F-actin. S. Asahara, Y. Shibutani, K. Teruyama, H. Y. Inoue, Y. Kawada, H. Etoh, T. Matsuda, M. Kimura-Koyanagi, N. Hashimoto, M. Sakahara, W. Fujimoto, H. Takahashi, S. Ueda, T. Hosooka, T. Satoh, H. Inoue, M. Matsumoto, A. Aiba, M. Kasuga, Y. Kido. Diabetologia, Feb 2013.


97.

Toll-like receptor 2 and palmitic acid cooperatively contribute to the development of nonalcoholic steatohepatitis through inflammasome activation in mice. Miura K, Yang L, Rooijen N, Brenner D A, Ohnishi H, Seki E. Hepatology, Vol.57(2), p577-589, Feb 2013.


98.

Transcriptional Regulatory Factor X6 (Rfx6) Increases Gastric Inhibitory Polypeptide (GIP) Expression in Enteroendocrine K-cells and Is Involved in GIP Hypersecretion in High Fat Diet-induced Obesity*. K.Suzuki, N.Harada, S.Yamane, Y.Nakamura, K.Sasaki, D.Nasteska, E.Joo, K.Shibue, T.Harada, A.Hamasaki, K.Toyoda, K.Nagashima and N.Inagaki. The Journal of Biological Chemistry, Vol.288, p1929-1938, Jan 2013.


99.

Improved hypothermic short-term storage of isolated mouse islets by adding serum to preservation solutions. Yasuko Kimura, Teru Okitsu, Liu Xibao, Hiroki Teramae, Atsuhito Okonogi, Kentaro Toyoda, Shinji Uemoto and Masanori Fukushima. Islets, Vol.5(1), Jan 2013.


100.

Anti-diabetic effect of amorphastilbol through PPARα/γ dual activation in db/db mice. Lee W, Ham J, Kwon H C, Kim Y K, Kim S-N. Biochemical and Biophysical Research Communications, Jan 2013.

101.

Transcriptional Regulatory Factor X6 (Rfx6) Increases Gastric Inhibitory Polypeptide (GIP) Expression in Enteroendocrine K-cells and Is Involved in GIP Hypersecretion in High Fat Diet-induced Obesity. Suzuki K, Harada N, Yamane S, Nakamura Y, Sasaki K, Nasteska D, Joo E, Shibue K, Harada T, Hamasaki A,Toyoda K, Nagashima K and Inagaki N. The Journal of Biological Chemistry, Vol.288, p1929-1938, Jan 2013.


102.

Apelin inhibits diet-induced obesity by enhancing lymphatic and blood vessel integrity. Sawane M, Kajiya K, Kidoya H, Takagi M, Muramatsu F and Takakura N. Diabetes, 2013.


103.

Beneficial effects of Allium sativum L. stem extract on lipid metabolism and antioxidant status in obese mice fed a high fat diet. Kim I, Kim H-R, Kim J-H, Om A-S. Journal of the Science of Food and Agriculture, 2013.


104.

Intake of mulberry 1-deoxynojirimycin prevents diet-induced obesity through increases in adiponectin in mice. Tsuduki T, Kikuchi I, Kimura T, Nakagawa K, Miyazawa T. Food Chemistry, Vol.139(14), p16-23, 2013.


105.

Effect of Mukitake mushroom (Panellus serotinus) on the pathogenesis of lipid abnormalities in obese, diabetic ob/ob mice. Inoue N, Inafuku M, Shirouchi B, Nagao K and Yanagita T. Lipids in Health and Disease, Vol.12(18), 2013.


106.

Pax6 Directly Down-Regulates Pcsk1n Expression Thereby Regulating PC1/3 Dependent Proinsulin Processing. Liu T., Zhao Y., Tang N., Feng R., Yang X., Lu N., Wen J., Li L. PLOS ONE, Vol.7(10), Oct 2012.


107.

Anti-Diabetic Atherosclerosis Effect of Prunella vulgaris in db/db Mice with Type 2 Diabetes. Hwang S M, Kim J K, Lee Y J, Yoon J J, Lee S M, Kang D G, Lee H S. Am J Chin Med, Vol.40, 2012.


108.

Prevention mechanisms of glucose intolerance and obesity by cacao liquor procyanidin extract in high-fat diet-fed C57BL/6 mice. Y. Yamashita., M. Okabe., M. Natsume., H. Ashida. Archives of Biochemistry and Biophysics, Available online 23 March 2012, In Press


109.

The Action of D-Dopachrome Tautomerase as an Adipokine in Adipocyte Lipid Metabolism. T. Iwata., H. Taniguchi., M. Kuwajima., T. Taniguchi., Y. Okuda., A. Sukeno., K. Ishimoto., N. Mizusawa., K. Yoshimoto. PLos ONE, Vol. 7(3), Mar 2012.


110.

Soymorphin-5, a soy-derived μ-opioid peptide, decreases glucose and triglyceride levels through activating adiponectin and PPARα systems in diabetic KKAy mice. Y. Yamada.,.A. Muraki.,.M. Oie.,.N. Kanegawa.,.A. Oda., Y. Sawashi., K. Kaneko., M. Yoshikawa., T. Goto., N. Takahashi., T. Kawada., and K. Ohinata. American Physiological Society, Vol.302, No.4, E433-E440, 2012.


111.

Effects of Gametophytes of Ecklonia Kurome on the Levels of Glucose and Triacylglycerol in db/db, Prediabetic C57BL/6J and IFN-γ KO Mice. F. Dwiranti., M. Hiraoka., T. Taguchi., Y. Konishi., M. Tominaga., A. Tominaga. Int J B 64 iomed Sci, Vol.8, No.1, Mar 2012.


112.

Endoplasmic Reticulum Stress Inhibits STAT3-Dependent Suppression of Hepatic Gluconeogenesis via Dephosphprylation and Deacetylation. K. Kimura., T. Yamada., M. Matsumoto., Y. Kido., T. Hosooka., S. Asahara., T. Matsuda., T. Ota., H. Watanabe., Y. Sai., K. Miyamoto., S. Kaneko., M. Kasuga., H. Inoue. Diabetes, Vol.61, No.1, p61-73, 2012.


113.

Melatonin protects mice with intermittent hypoxia from oxidative stress-induced pancreatic injury. LI G., HOU G., LU W., KANG J. Sleep and Biological Rhythms, Vol.9(2), p78-85, Apr 2011.


114.

A novel dipeptidyl peptidase IV inhibitor DA-1229 ameliorates streptozotocin-induced diabetes by increasing β-cell replication and neogenesis. J, M, Cho., H, W, Jang., H, Cheon.,Y, T, Jeong., D-H, Kim., Y-M, Lim., S, Choi., E, Yang., C-Y, Shin., M, H, Son., S, H, Kim., H, Kim., M, Lee. Diabetes Research and Clinical Practice.Vol. 91(1), p72-79, 2011.



产品列表

产品编号 产品名称 产品规格 产品等级 备注
634-01481 (AKRIN-011T)LBIS® Insulin-Mouse-T 96 tests

免责声明

1. 本公司密切关注本网站发布的内容,但不保证发布内容的准确性、完整性、可靠性和最新性等。

2. 本公司不保证使用本网站期间不会出现故障或计算机病毒污染的风险。

3. 无论何种原因,使用本网站时给用户或第三方造成的任何不利或损害,本公司概不负责。此外,对于用户与其他用户或第三方之间因本网站发生的任何交易、通讯

3. 纠纷,本公司概不负责。

4. 本网站可提供的所有产品和服务均不得用于人体或动物的临床诊断或治疗,仅可用于科研等非医疗目的。如任何用户将本网站提供的产品和服务用临床诊断或治

4. 疗,以及他特定的用途或行为,本公司概不保证其安全性和有效性,并且不负任何相关的法律责任。

LBIS® 尿白蛋白检测试剂盒 自我免疫疾病 肾病研究

自我免疫疾病 肾病研究

LBIS® 尿白蛋白检测试剂盒

白蛋白检测用 ELISA Kit

■ LBIS® Albumin Mouse ELISA Kit

■ LBIS® Albumin Rat ELISA Kit

追加双板试剂盒

标准曲线范围:50~1,000 ng/mL

◆特点

● 短时间测定(总反应时间:2小时2分)

● 可微量样品测定(标准操作法为5μL)

● 使用对环境无害的防腐剂

● 全部试剂均为液体,可直接使用

● 精密的测试精度和告再现性

◆精度测试

● 组内变异(5次重复测定、3个样品): 平均 C.V. 值为 10% 以下

● 组间变异(3次重复测定、3个样品、3天): 平均 C.V. 值为 10% 以下

◆样品:血清或血浆、尿液

 

● 血浆采血推荐使用肝素

● 用本试剂盒配备的缓冲液稀释检体,稀释范围如下:

 

稀释倍数

血浆或血清检体:1万~5万倍

尿液检体:100 倍

 

8W

12W

16w

20w

24w

32w

40w

MRL/lpr,♂

8.9(5.3)

3.7(2.7)

30.1(5.7)

3,504(4,012)

2,100(3,990)

MRL/lpr,♀

2.5(0.6)

4.5(3.6)

2,055(3,244)

435(481)

436(616)

NZBWF1,♀

3.2(3.0)

4.6(2.0)

3.3(2.2)

3.1(1.8)

476(681)

3,471(4,288)

 

 

白蛋白检测试剂盒(免疫比浊法)

Turbidimetric Immuno Assay Kit (TIA Kit)

 

LBIS® 尿白蛋白检测试剂盒 自我免疫疾病 肾病研究

■ LBIS® Albumin-Monkey(S-type)

■ LBIS® Albumin-Rat(S-type)

※ 图片为 LBIS® Albumin-Rat(S-type)

◆特点

● 测试范围

  猴子 2.5~202.5 μg/mL

  小鼠/大鼠 6.17~500 μg/mL

● 样品:尿液或血清

● 对猴子、小鼠、大鼠白蛋白各自使用专用抗体会分别产生特异反应。

● 使用普通的生化学自动分析装置,可短时间(10分钟)测定。

● 测试范围广,再现性高。

● 自定分析装置测试,不受手工操作影响。

● 为日本国内厂商的自动分析装置提供参数。(一部分除外)

◆精度测试(同时测试猴子用、小鼠用、大鼠用)

● 组内变异(5次重复检测、3个样品):平均 C.V. 值为 10% 以下

● 组间变异(3次重复检测、3个样品、4天):平均 C.V. 值为 10% 以下

 

 

参考文献

◆Lbis® 小鼠白蛋白 ELISA试剂的相关参考文献

 

 1.

The proteasome inhibitor bortezomib attenuates renal fibrosis in mice via the suppression of TGF-β1. Zeniya M, Mori T, Yui N, Nomura N, Mandai S, Isobe K, Chiga M, Sohara E, Rai T, Uchida S. Sci Rep. 2017 Oct 12;7(1):13086.

 

 2.

A protease-activated receptor-1 antagonist protects against podocyte injury in a mouse model of nephropathy. Yu Guan, Daisuke Nakano, Yifan Zhang, Lei Li, Wenhua Liu, Motohiro Nishida, Takashige Kuwabara, Asahiro Morishita, Hirofumi Hitomi, Kiyoshi Mori, Masashi Mukoyama, Tsutomu Masaki, Katsuya Hirano, Akira Nishiyama. Journal of Pharmacological Sciences, Available online 14, Sep 2017.

 

 3.

Rosuvastatin pretreatment suppresses distant organ injury following unilateral renal ischemia-reperfusion in hypertensive Dahl salt-sensitive rats. Kanno M, Nakayama M, Zhu WJ, Hayashi Y, Kazama JJ. Nephrology (Carlton). 2017 Sep 22.

 

 4.

Podocan Is Expressed in Blood and Adipose Tissue and Correlates Negatively With the Induction of Diabetic Nephropathy ? Yasunori Nio, Mitsugi Okawara, Shoki Okuda, Takanori Matsuo, Naoki Furuyama. Journal of the Endocrine Society, Vol.1, Issue 7, Jul 2017, Pages 772-786,

 

 5.

LXR, PPARγ, and PPARδ Agonists Are Not Sufficient to Demonstrate Therapeutic Potential against Mouse Model of Systemic Lupus Erythematosus. Toyota Tatebe N, Sunahori Watanabe K, Zeggar S, Hiramatsu S, Yan M, Katsuyama T, Katsuyama E, Watanabe H, Sada K, Wada J. Open Journal of Rheumatology and Autoimmune Diseases, 2017, 7, 128-136

 

 6.

Potent long-acting rhFGF21 analog for treatment of diabetic nephropathy in db/db and DIO mice. Zhao L, Wang H, Xie J, Chen Z, Li X, Niu J. BMC Biotechnol. 2017 Jul 4;17(1):58.

 

 7.

Renoprotective effect of a novel selective PPARα modulator K-877 in db/db mice: A role of diacylglycerol-protein kinase C-NAD(P)H oxidase pathway. Maki T, Maeda Y, Sonoda N, Makimura H, Kimura S, Maeno S, Takayanagi R, Inoguchi T. Metabolism. 2017 Jun;71:33-45.

 

 8.

Dab1 Contributes to Angiotensin II-Induced Apoptosis via p38 Signaling Pathway in Podocytes. Gao Z, Chen X, Zhu K, Zeng P, Ding G. Biomed Res Int. 2017;2017:2484303.

 

 9.

Combination of cilostazol and probucol protected podocytes from lipopolysaccharide-induced injury by both anti-inflammatory and anti-oxidative mechanisms. He P, Kawamura H, Takemoto M, Maezawa Y, Ishikawa T, Ishibashi R, Sakamoto K, Shoji M, Hattori A, Yamaga M, Ide S, Ide K, Hayashi A, Tokuyama H, Kobayashi K, Yokote K. J Nephrol. 2016 Dec 22.

 

10.

Tofogliflozin, a selective inhibitor of sodium-glucose cotransporter 2, suppresses renal damage in KKAy/Ta mice, obese and type 2 diabetic animals. Ishibashi Y, Matsui T, Yamagishi SI. Diab Vasc Dis Res. 2016 Jul 12.

 

11.

Fermentation of purple Jerusalem artichoke extract to improve the α-glucosidase inhibitory effect in vitro and ameliorate blood glucose in db/db mice. Wang Z, Hwang SH, Lee SY, Lim SS. Nutr Res Pract. 2016 Jun;10(3):282-7.

 

12.

Nuclear factor erythroid 2-related factor 2 is a critical target for the treatment of glucocorticoid-resistant lupus nephritis. Ebihara S, Tajima H, Ono M. Arthritis Res Ther. 2016 Jun 14;18(1):139.

 

13.

A novel podocyte gene, semaphorin 3G, protects glomerular podocyte from lipopolysaccharide-induced inflammation. Ishibashi R, Takemoto M, Akimoto Y, Ishikawa T, He P, Maezawa Y, Sakamoto K, Tsurutani Y, Ide S, Ide K, Kawamura H, Kobayashi K, Tokuyama H, Tryggvason K, Betsholtz C, Yokote K. Sci Rep. 2016 May 16;6:25955.

 

14.

Treatment with anti-IL-6 receptor antibody prevented increase in serum hepcidin levels and improved anemia in mice inoculated with IL-6-producing lung carcinoma cells. Noguchi-Sasaki M, Sasaki Y, Shimonaka Y, Mori K, Fujimoto-Ouchi K. BMC Cancer. 2016 Apr 11;16:270.

 

15.

Imaging Mass Spectrometry Reveals Acyl-Chain- and Region-Specific Sphingolipid Metabolism in the Kidneys of Sphingomyelin Synthase 2-Deficient Mice. Sugimoto M, Wakabayashi M, Shimizu Y, Yoshioka T, Higashino K, Numata Y, Okuda T, Zhao S, Sakai S, Igarashi Y, Kuge Y. PLoS One. 2016 Mar 24;11(3):e0152191.

 

16.

Chronic Administration of Visfatin Ameliorated Diabetic Nephropathy in Type 2 Diabetic Mice. Kang YS, Lee MH, Song HK, Kim JE, Ghee JY, Cha JJ, Lee JE, Kim HW, Han JY, Cha DR. Kidney Blood Press Res. 2016;41(3):311-24.

 

17.

Chelation of dietary iron prevents iron accumulation and macrophage infiltration in the type I diabetic kidney. Morita T, Nakano D, Kitada K, Morimoto S, Ichihara A, Hitomi H, Kobori H, Shiojima I, Nishiyama A. Eur J Pharmacol. Vol.756, p85-91, Jun 2015.

 

18.

Chelation of dietary iron prevents iron accumulation and macrophage infiltration in the type I diabetic kidney. Morita T, Nakano D, Kitada K, Morimoto S, Ichihara A, Hitomi H, Kobori H, Shiojima I, Nishiyama A. Eur J Pharmacol. Mar 2015.

 

19.

C-type natriuretic peptide attenuates lipopolysaccharide-induced acute lung injury in mice. Kimura T, Nojiri T, Hosoda H, Ishikane S, Shintani Y, Inoue M, Miyazato M, Okumura M, Kangawa K. J Surg Res. Vol.194(2), p631-7, Apr 2015.

 

20.

Myocardial infarction accelerates glomerular injury and microalbuminuria in diabetic rats via local hemodynamics and immunity. Dong Z, Gong K, Huang D, Zhu W, Sun W, Zhang Y, Xin P, Shen Y, Wu P, Li J, Lu Z, Zhang X, Wei M. Int J Cardiol.Vol.179, p397-408, Jan 2015.

 

21.

Effects of Toll-like receptor antagonist 4,5-dihydro-3-phenyl-5-isoxasole acetic acid on the progression of kidney disease in mice on a high-fat diet. Min HS., Kim JE., Lee MH., Song HK., Lee MJ., Lee JE., Kim HW., Cha JJ., Hyun YY., Han JY., Cha DR., Kang YS. Kidney Research and Clinical Practice, 2014.

 

22.

Ameliorates the Progression of Type 2 Diabetic Nephropathy by Exerting Antioxidative Effects. Ishizawa K., Izawa-Ishizawa Y., Yamano N., Urushihara M., Sakurada T., Imanishi M., Fujii S., Nuno A., Miyamoto L., Kihira Y., Ikeda Y., Kagami S., Kobori H., Tamaki T. PLOS one, 2014

 

23.

T olvaptan delays the onset of end-stage renal disease in a polycystic kidney disease model by suppressing the increases in kidney volume and renal injury. Aihara M., Fujiki H., Mizuguchi H., Hattori K., Ohmoto K., Ishikawa M., Nagano K. and Yamamura Y. JPET, Feb 2014.

 

24.

Local Mineralocorticoid Receptor Activation and the Role of Rac1 in Obesity-Related Diabetic Kidney Disease. Yoshida S., Ishizawa K., Ayuzawa N., Ueda K., Takeuchi M., Kawarazaki W., Fujita T., Nagase M.  Nephron Exp Nephrol, Vol.126, p16-24, 2014.

 

25.

Renin inhibition ameliorates renal damage through prominent suppression of both angiotensin I and II in human renin angiotensinogen transgenic mice with high salt loading. Yoshida S., Ishizawa K., Ayuzawa N., Ueda K., Takeuchi M., Kawarazaki W., Fujita T., Nagase M. Clinical and Experimental Nephrology, Oct 2013.

 

26.

Fibroblast Growth Factor 21 Improves Insulin Resistance and Ameliorates Renal Injury in db/db Mice. Kim HW., Lee JE., Cha JJ., Hyun YY., Kim JE., Lee MH., Song HK., Nam DH., Han JY., Han SY., Han KH., Kang YS. and Cha DR. Endocrinology, Vol.154(9), Sep 2013.

 

27.

Phycocyanin and phycocyanobilin from Spirulina platensis protect against diabetic nephropathy by inhibiting oxidative stress. Zheng J., Inoguchi T., Sasaki S., Maeda Y., McCarty MF., Fujii M., Ikeda N., Kobayashi K., Sonoda N., Takayanagi R. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, Vol.304, R110-120, Jun 2013.

 

28.

Phycocyanin and phycocyanobilin from Spirulina platensis protect against diabetic nephropathy by inhibiting oxidative stress. Zheng J., Inoguchi T., Sasaki S., Maeda Y., McCarty MF., Fujii M., Ikeda N., Kobayashi K., Sonoda N., Takayanagi R. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, Vol.304, R110-120, Jun 2013.

 

29.

Celastrol, an NF-κB Inhibitor, Improves Insulin Resistance and Attenuates Renal Injury in db/db Mice. J.E.Kim, M.H.Lee, D.H.Nam, H.K.Song, Y.S.Kang, J.E.Lee, H.W.Kim, J.J.Cha, Y.Y.Hyun, S.Y.Han, K.H.Han, J.Y.Han, D.R.Cha. PLOS one 2013.

 

30.

Phycocyanin and phycocyanobilin from Spirulina platensis protect against diabetic nephropathy by inhibiting oxidative stress. Zheng J, InoguchiT, SasakiS, MaedaY, McCarty M F, Fujii M, Ikeda N, Kobayashi K, Sonoda N and Takayanagi R. AJP – Regu Physiol,Vo.304(2),p110-120 Jan 2013.

 

31.

Phycocyanin and phycocyanobilin from Spirulina platensis protect against diabetic nephropathy by inhibiting oxidative stress. J.Zheng, T.Inoguchi, S.Sasaki, Y.Maeda, M.F.McCarty, M.Fujii, N.Ikeda, K.Kobayashi, N.Sonoda, R.Takayanagi. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, Vol.304, Jan 2013.

 

32.

Add-On Aliskiren Elicits Stronger Renoprotection Than High-Dose Valsartan in Type 2 Diabetic KKAy Mice That Do Not Respond to Low-Dose Valsartan. Lei B, Nakano D, Fan Y-Y, Kitada K, Hitomi H, Kobori H, Mori H, Masaki T and Nishiyama A. J Pharmacol Sci,Vol.119(2), p131-138,Jun 2012.

 

33.

Aldosterone Does Not Contribute to Renal p21 Expression During the Development of Angiotensin II-Induced Hypertension in Mice. Nakano D, Lei B, Kitada K, Hitomi H, Kobori H, Mori H, Deguchi K, Masaki T, Minamino T and Nishiyama A. Am J Hypertens, Vol.25(3), p354-358, Mar 2012.

 

34.

Blockade of Cannabinoid Receptor 1 Improves Insulin Resistance, Lipid Metabolism, and Diabetic Nephropathy in db/db Mice. D. H. Nam., M. H. Lee., J. E. Kim., H. K. Song., Y. S. Kang., J. E. Lee., H. W. Kim., J. J. Cha., Y. Y. Hyun., S. H. Kim., S. Y. Han., K. H. Han, J. Y. Han and Dae Ryong Cha. Endocrinology, Vol.153, No.3, p1387-1396, Mar 2012.

 

35.

An Angiotensin II Type 1 Receptor Blocker Prevents Renal Injury via Inhibition of the Notch Pathway in Ins2 Akita Diabetic Mice. M. Koshizaka., M. Takemoto., S. Sato., H. Tokuyama., M. Fujimoto., E. Okabe., R. Ishibashi., T. Ishikawa., Y. Tsurutani., S. Onishi., M. Mezawa., P. He., S. Honjo., S. Ueda., Y. Saito and K. Yokote. Experimental Diabetes Research, Vol.2012.

 

36.

Advanced-glycation-end-product-cholesterol-aggregated-protein accelerates the proliferation of mesangial cells mediated by transforming-growth-factor-beta 1 receptors and the ERK-MAPK pathway. Hirasawa Y, Sakai T, Ito M, Yoshimura H, Feng Y, Nagamatsu T. European Journal of Pharmacology, Vol.672(1-3), p159-168, Dec 2011.

 

37.

Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. S. Sekiya., A. Suzuki. Nature 475,390-393(2011)

 

38.

Aliskiren improves insulin resistance and ameliorates diabetic vascular complications in db/db mice. Y. S. Kang., M. H. Lee., H. K. Song., Y. Y. Hyun., J. J. Cha., G. J. Ko., S. H. Kim., J. E. Lee., J. Y. Han. and D. R. Cha. Nephrol. Dial. Transplant. (2011) 26 (4): 1194-1204.

 

39.

Intramuscular transplantation of engineered hepatic tissue constructs corrects acute and chronic liver failure in mice. N. N.-Alvarez., A. S.-Gutierrez., Y. Chen., J. C.-Corbalan., W. Hassan., S. Kobayashi., Y. Kondo., M. Iwamuro., K. Yamamoto., E. Kondo., N. Tanaka., I. J. Fox., N. Kobayashi. Journal of Hepatology Vol. 52(2), p211-219, 2010.

 

40.

CCR2 antagonism improves insulin resistance, lipid metabolism, and diabetic nephropathy in type 2 diabetic mice. Kang,Y.S.,Lee,M.H.,Song,H.K.,Ko,G.J.,Kwon,O.S.,Lim,T.K.,Kim,S.H.,Han,S.Y.,Hyun,K. Kidney International, Vol.78, p883-894, November(1), 2010

 

41.

Effect of interleukin-6 receptor blockage on renal injury in apolipoprotein E-deficient mice. Tomiyama-Hanayama M, Rakugi H, Kohara M, Mima T, Adachi Y, Ohishi M, Katsuya T, Hoshida Y, Aozasa K, Ogihara T and Nishimoto N. AJP – Renal Physiol, Vol.297(3), p679-684, Sep 2009.

 

42.

Elevated Urinary Cr Loss Induces a Reduction in Renal Cr Concentration and the Negative Cr Balance in Streptozotocin-Induced Diabetic Mice. MITA Y, ISHIHARA K, ISHIGURO M, TAKEDA M, HATTORI R, MURAKAMI K, YAMADA A, YASUMOTO K. Journal of Nutritional Science and Vitaminology,Vol. 54(4), p303-308, 2008.

 

43.

Modification of mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease. Shibata S, Nagase M, Yoshida S, Kawarazaki W, Kurihara H, Tanaka H, Miyoshi J, Takai Y and Fujita T. NTURE MEDFICINE, Vol.14(12), p1370-1376, Dec 2008.

 

44.

Rubratoxin B induces interleukin-6 secretion in mouse white Adipose tissues and 3T3-L1 adipocytes. Keiko Iwashita,Hitoshi Nagashima. Toxicology Letters, Vol.182, p79-83, 2008.

 

45.

Deterioration of atherosclerosis in mice lacking angiotensin II type 1A receptor in bone marrow-derived cells. Kato,H., Ishida,J., Nagano,K., Honjo,K., Sugaya,T., Takeda,N., Sugiyama,F., Yagami,K., Fujita,T., Nangaku,M., and Fukamizu, A. Lab Invest., Vol.88(7), p731-9, 2008.

 

46.

Differentiation of mouse and human embryonic stem cells into hepatic lineages. Shiraki,N., Umeda,K., Sakashita,N., Takeya,M., Kume,K., and Kume, S. Genes to Cells, Vol.13, p731-746, 2008.

 

47.

Effect of Lactobacillus jonsonii La1 on immune function and serum albumin in aged and malnourished aged mice. Kaburagi, T., Yamano, T., Fukushima, Y, Yoshino, H., Mito, N., and Sato, K. Nutrition Vol.24, p342-350, 2007.

 

48.

Differentiation of mouse embryonic stem cells to hepatocyto-like cells by co-culture with human liver nonparenchymal cell lines. Soto-Gutierrez, A., Navarro-Alvarez, N., Zhao, D., Rivas, J.D., Rivas-Carillo, J.D., Lebkowski, J., Tanaka, N., Fox, I.J., and Kobayashi, N. Nature Protocols. Electronic Edition Vol.2, p347-356, 2007.

 

49.

Construction and transplantation of an engineered hepatic tissue using a polyaminourethane-coated nonwoven polytetrafluoroethylene fabric. Soto-Gutierrez, A., Navarro-Alvarez, N., Rivas, J.D., Tanaka, K., Chen, Y., Misawa, H., Okitsu, T., Noguchi, H., Tanaka, N., and Kobayashi, N. Transplantation, Vol.83, p129-137, 2007.

 

50.

Pitavastatin ameliorates albuminuria and renal mesangial expansion by downregulating NOX4 in db/db mice. Fujii, M., Inoguchi, T., Maeda, Y., Sasaki, S., Sawada, F., saito, R., Kobayashi, K., Sumitomo, H., and Takayanagi, R. Kidney International, Vol.72, p473-480, 2007.

 

51.

Characterization of cytochrome P450 expression in murine embryonic stem cell-derived hepatic tissue system. Tsutsui, M., Ogawa, S., Inada, Y., Tomioka, E., Kamiyoshi, A., Tanaka, S., Kishida, S., Nishiyama, M., Murakami, M., Kuroda, J., Hashikura, Y., Miyagawa, S., satoh, F., shibata, N., and Tagawa, Y. Drug Metabolism and Disposition, Vol.34, p696-701, 2006.

 

52.

Growth factor midkine is involved in the pathogenesis of diabetic nephropathy. Kosugi, T., Yuzawa, Y., sato, W., Kawai, H., Matsuo, S.,Takei,Y.,Muramatsu,T., and Kadomatsu,K. Am J Pathology Vol.168, p9-19, 2006.

 

53.

Characterization of cytochrome P450 expression in murine embryonic stem cell-derived hepatic tissue system. Tsutsui,M., Ogawa,S., Inada,Y., Tomioka,E., Kammiyoshi,A., Tanaka,S., Kishida,T., Nishiyama,M., Murakami,M., Kuroda,J., Hashikura,Y., Miyagawa,S., Satoh,F., Shibata,N., and Tagawa,Y. The American Society for Pharmacology and Experimental Thera- peutics, Vol.34, p696-701,2006.

 

54.

Supplementation with chromium picolinate recovers renal Cr concentration and improves carbohydrate metabolism and renal function in type 2 diabetic mice. Mita, Y., Ishihara, K., Fukuchi, Y., Fukuya, Y., and Yasumoto, K. Biological Trace Element Research, Vol.105, p229-248, 2005.

 

55.

6-Methylsulfinylhexyl Isothiocyanate, an Antioxidant Derived from Wasabia japonica MATUM, Ameliorates Diabetic Nephropathy in Type 2 Diabetic Mice. FUKUCHI Y, KATO Y, OKUNISHI I, MATSUTANI Y, OSAWA T, NAITO M. Food Science and Technology Research, Vol.10(3), p290-295, 2004.

 

56.

Tissue array substratum composed of histological sections: A new platform for orienting differentiation of embryonic stem cells towards hepatic lineage. Takeuchi, T., Ochiya, T., and Takezawa, T. Tissue Eng Part A. 2008 Feb;14(2):267-74

 

 

 

 

◆Lbis® 大鼠白蛋白 ELISA试剂盒相关参考文献

 

 1.

Protective Role of PEDF-Derived Synthetic Peptide Against Experimental Diabetic Nephropathy. Ishibashi Y, Matsui T, Taira J, Higashimoto Y, Yamagishi S. Horm Metab Res. 2016 Sep;48(9):613-9.

 

 2.

A sodium-glucose co-transporter 2 inhibitor empagliflozin prevents abnormality of circadian rhythm of blood pressure in salt-treated obese rats. Takeshige Y, Fujisawa Y, Rahman A, Kittikulsuth W, Nakano D, Mori H, Masaki T, Ohmori K, Kohno M, Ogata H, Nishiyama A. Hypertens Res. 2016 Jun;39(6):415-22.

 

 3.

Effect of ipragliflozin, an SGLT2 inhibitor, on progression of diabetic microvascular complications in spontaneously diabetic Torii fatty rats. Takakura S, Toyoshi T, Hayashizaki Y, Takasu T. Life Sci. 2016 Feb 15;147:125-31.

 

 4.

An Atherogenic Paigen-Diet Aggravates Nephropathy in Type 2 Diabetic OLETF Rats. Masanori Nozako, Takashi Koyama, Chifumi Nagano, Makoto Sato, Satoshi Matsumoto, Kiminobu Mitani, Reiko Yasufuku, Masayuki Kohashi, and Tomohiro Yoshikawa. PLoS One. 2015; 10(11): e0143979.

 

 5.

Oxygenated Static Preservation of Donation after Cardiac Death Liver Grafts Improves Hepatocyte Viability and Function.. Yu J, Murakami M, Aoki T, Jiang B, Jin Z, Koizumi T, Kusano M, Kamijo R, Miyamoto Y, Enami Y, Watanabe M, Otsuka K. Eur Surg Res. 2016;56(1-2):1-18.

 

 6.

Chronic Running Exercise Alleviates Early Progression of Nephropathy with Upregulation of Nitric Oxide Synthases and Suppression of Glycation in Zucker Diabetic Rats. Daisuke Ito, Pengyu Cao, Takaaki Kakihana, Emiko Sato, Chihiro Suda, Yoshikazu Muroya, Yoshiko Ogawa, Gaizun Hu, Tadashi Ishii, Osamu Ito, Masahiro Kohzuki, and Hideyasu Kiyomoto. PLoS One. 2015; 10(9): e0138037.

 

 7.

Effect of ipragliflozin, an SGLT2 inhibitor, on progression of diabetic microvascular complications in spontaneously diabetic Torii fatty rats. Takakura S, Toyoshi T, Hayashizaki Y, Takasu T. Life Sci. Volume 147, 15 February 2016, Pages 125–131

 

 8.

Automated image analysis of a glomerular injury marker desmin in SDT rats treated with losartan. Kakimoto T, Okada K, Hirohashi Y, Relator R, Kawai M, Iguchi T, Fujitaka K, Nishio M, Kato T, Fukunari A, Utsumi H. J Endocrinol, Vol.222(1), p43-51, Jul 2014.

 

 9.

Exercise training upregulates nitric oxide synthases in the kidney of rats with chronic heart failure. Ito D., Ito O., Mori N., Cao P., Suda C., Muroya Y., Hao K., Shimokawa H., Kohzuki M. Clinical and Experimental Pharmacology and Physiology, Vol.40(9), p617-625, Sep 2013.

 

10.

Sulodexide improves renal function through reduction of vascular endothelial growth factor in type 2 diabetic rats. Cha JJ., Kang YS., Hyun YY., Han SY., Jee YH., Han KH., Han JY., Cha DR. Life Sciences, Vol.92(23), p1118-1124, Jun 2013.

 

11.

Aberrant Activation of the Intrarenal Renin-Angiotensin System in the Developing Kidneys of Type 2 Diabetic Rats. Fan YY., Kobori H., Nakano D., Hitomi H., Mori H., Masaki T., Sun YX., Zhi N., Zhang L., Huang W., Zhu B., Li P. and Nishiyama A. Horm Metab Res, Vol.45(5), p338-343, May 2013.

 

12.

Effects of exercise training on nitric oxide synthase in the kidney of spontaneously hypertensive rats. Ito D, Ito O, Cao P, Mori N, Suda C, Muroya Y, Takashima K, Ito S, Kohzuki M. Clinical and Experimental Pharmacology and Physiology, Vol.40(2), p74-82, Feb 2013.

 

13.

Renal Sympathetic Denervation Suppresses De Novo Podocyte Injury and Albuminuria in Rats With Aortic Regurgitation. Rafiq K, Noma T, Fujisawa Y, Ishihara Y, Arai Y, Nurun Nabi A H M, Suzuki F, Nagai Y, Nakano D, Hitomi H, Kitada K, Urushihara M, Kobori H, Kohno M, Nishiyama A. Circulation,Vol.125, p1402-1413,2012.

 

14.

GLP-1 analog liraglutide protects against oxidative stress and albuminuria in streptozotocin-induced diabetic rats via protein kinase A-mediated inhibition of renal NAD(P)H oxidases. Hendarto H, Inoguchi T, Maeda Y, Ikeda N, Zheng J, Takei R, Yokomizo H, Hirata E, Sonoda N, Takayanagi R. Metabolism – Clinical and Experimental,Vol.61(10), p1422-1434, Oct 2012.

 

15.

N-type Calcium Channel Inhibition With Cilnidipine Elicits Glomerular Podocyte Protection Independent of Sympathetic Nerve Inhibition. Lei B,Nakano D, Fujisawa Y, Liu Y, Hitomi H, Kobori H, Mori H, Masaki T, Asanuma K, Tomino Y and Nishiyama A. J Pharmacol Sci, Vol.119(4), p359-367, Aug 2012.

 

16.

Beneficial effect of ubiquinol, the reduced form of coenzyme Q10, on cyclosporine nephrotoxicity. Ishikawa A, Homma Y. Int. braz j urol, Vol.38(2) 2012.

 

17.

Effect of Eplerenone, a Selective Aldosterone Blocker, on the Development of Diabetic Nephropathy in Type 2 Diabetic Rats . Ahn J H, Hong H C, Cho M J, Kim Y J, Choi H Y, Eun C R, Yang S J, Yoo H J, Kim H Y, Seo J A, Kim S G, Choi K M, Baik S H, Choi D S and Kim N H.  Diabetes Metab J, Vol36(2), p128-135, Apr 2012.

 

18.

P2X7 receptor antagonism attenuates the hypertension and renal injury in Dahl salt-sensitive rats. X. Ji., Y. Naito., G. Hirokawa., H. Weng., Y. Hiura., R. Takahashi and N. Iwai. Hypertension Research, 35, p173-179 (February 2012)

 

19.

The effects of iridium on the renal function of female Wistar rats. Iavicoli I, Fontana L, Marinaccio A, Alimonti A, Pino A, Bergamaschi A, Calabrese E J. Ecotoxicology and Environmental Safety, Vol.74(7), p1795-1799, Oct 2011.

 

20.

Effect of methylmercury administration on choroid plexus function in rats. M. Nakamura., A. Yasutake., M. Fujimura., N. Hachiya and M. Marumoto. Archives of Toxicology Vol. 85, (2011), p911-918,

 

21.

Renal preservation effect of ubiquinol, the reduced form of coenzyme Q10. A. Ishikawa., H. Kawarazaki., K. Ando., M. Fujita., T. Fujita and Y. Homma. Clinical and Experimental Nephrology Vol.15, Number 1 (2011), p30-33,

 

22.

Effects of mineralocorticoid receptor blockade on glucocorticoid-induced renal injury in adrenalectomized rats. K. Rafiq., D. Nakano., G. Ihara., H. Hitomi., Y. Fujisawa., N. Ohashi., H. Kobori., Y. Nagai., H. Kiyomoto., M. Kohno and A. Nishiyama. J Hypertens. 2011 February; 29(2): p290-298.

 

23.

Regression of superficial glomerular podocyte injury in type 2 diabetic rats with overt albuminuria: effect of angiotensin II blockade. Ihara G, Kiyomoto H, Kobori H, Nagai Y, Ohashi N, Hitomi H, Nakano D, Pelisch N, Hara T, Mori T, Ito S, Kohno M and Nishiyamad A. J Hypertens, Vol.28(11), p2289-2298, Nov 2010 .

 

24.

Visfatin is upregulated in type-2 diabetic rats and targets renal cells. Kang Y S, Song H K, Lee M H, Ko G J, Han J Y, Han S Y, Han K H, Kim H K and Cha D R. Kidney International, Vol.78, p170-181, 2010.

 

25.

High Salt Intake Elevated Blood Pressure but not Changed Circadian Blood Pressure Rhythm in Otsuka Long-Evans Tokushima Fatty (OLETF) Rat. Matsumoto M, Tsujino T, Naito Y, Sakoda T, Ohyanagi M, Nonaka H and Masuyama T. Clinical and Experimental Hypertension, Vol.31(3) , p271-280, 2009

 

26.

Cold Preservation of the Liver With Oxygenation by a Two-Layer Method. Odaira,M., Aoki,T., Miyamoto,Y., Yasuhara,R., Jin,Z., Yu,J., Nishino,N., Yamada,K., Kusano,T., Hayashi,K., Yasuda,D., Koizumi,T., Mitamura,K., Enami,Y., Niiya,T., Murai,N., Kato,H., Shimizu,Y., Kamijyo,R., and Kusano, M. Journal of Surgical Research, Volume 152(2), p209-217, 2009.

 

27.

Effect of Astaxanthin in Combination with α-Tocopherol or Ascorbic Acid against Oxidative Damage in Diabetic ODS Rats. NAKANO M, ONODERA A, SAITO E, TANABE M, YAJIMA K, TAKAHASHI J, CHUYEN N V. Journal of Nutritional Science and Vitaminology, Vol.54(4), p329-334, 2008.

 

28.

Pioglitazone attenuates diabetic nephropathy through an anti-inflammatory mechanism in type 2 diabetic rats. Ko G J, Kang Y S, Han S Y, Lee M H, Song H K, Han K H, Kim H K, Han J Y and Cha D R. Nephrol. Dial. Transplant, Vol23(9), p2750-2760, 2008.

 

29.

Strict angiotensin blockade prevents the augmentation of intrarenal angiotensin II and podocyte abnormalities in type 2 diabetic rats with microalbuminuria. Nishiyama A, Nakagawa T, Kobori H, Nagai Y, Okada N, Konishi Y, Morikawa T, Okumura M, Meda I, Kiyomoto H, Hosomi N, Mori T, Ito S and Imanishie M. J Hypertens, Vol.26(9), p1849-1859, Sep 2008.

 

30.

Angiotensin receptor blockers improve insulin resistance in type 2 diabetic rats by modulating adipose tissue. Lee M H, Song H K, Ko G J, Kang Y S, Han S Y, Han K H, Kim H K, Han J Y and Cha D R. Kidney International, Vo.l74, p890-900, 2008.

 

31.

Cell processing on polyimide surface patterned by rubbing. Matsumoto,N.,Hiruma,H.,Nagaoka,S.,Fujiyama,K.,Kaneko,A., and Kawakami, H.. Polymers for Advanced Technologies, Vol.19(8), p1002-1008, 2008.

 

32.

Pitavastatin ameliorates albuminuria and renal mesangial expansion by downregulating NOX4 in db/db mice. Fujii M, Inoguchi T, Maeda Y, Sasaki S, Sawada F, Saito R, Kobayashi K, Sumimoto H and Takayanagi R. Kidney International, Vol.72, p473-480, 2007.

 

33.

Antidiabetic effect of long-term supplementation with Siraitia grosvenori on the spontaneously diabetic Goto-Kakizaki rat. Suzuki, Y.A., Tomoda, M., Murata Y., Inui, H., Sugiura, M., and Nakano, Y. British J Nutrition, Vol.97, p770-775, 2007.

 

34.

Hepatocyte transplantation from steatotic liver in a rat model. Hayashi, K., Aoki, T., Jin, Z., Wang, H., Nishino, N., Kusano, T., Yasuda, D., Koizumi, T., Enami, Y., and Odaira, M. J Surgical Research, Vol.142, p104-112, 2007

 

35.

Dietary nitrite inhibits early glomerular injury in streptozotocin-induced diabetic nephropathy in rats. Ohtake, K., Ishiyama, Y., Uchida, H., Muraki, E., and Kobayashi, J. Nitric Oxide, Vol.17, p75-81, 2007.

 

36.

High-fat diet in low-dose-streptozotocin-treated heminephrectomized rats induces all features of human type 2 diabetic nephropathy: A new rat model of diabetic nephropathy. Sugano M, Yamato H, Hayashi T, Ochiai H, Kakuchi J, Goto S, Nishijima F, Iino N, Kazama J J, Takeuchi T, Mokuda O, Ishikawa T, Okazaki R. Nutrition, Metabolism and Cardiovascular Diseases, Vol.16(7), p477-484, Oct 2006.

 

37.

Spironolactone ameriolates renal injuary and connective tissue growth factor expression in type II diabetic rats. Han, K.H., Kang, Y.S., Han, S.Y., Jee, Y.H., Lee, M.H., Han, J.Y., Kim, H.K., Kim, Y.S., and Cha, D.R. Kidney International, Vol.70, p111-120, 2006.

 

38.

High functional hollow fiber membrane modified with phospholipid polymers for a liver assist bioreactor. Ye, S.H., Watanabe, J., Takai, M., Iwasaki, Y., and Ishihara, K. Biomaterials, Vol.27, p1955-1962, 2006.

 

39.

Spironolactone prevents diabetic nephropathy through an anti-inflammatory mechanism in type 2 diabetic rats. Han,S.Y., Kim, C.H., Kim, H.S., Jee, Y.H., Song, H.K., Lee, M.H., Han, K.H., Kim, H.K., Kang, Y.S., Han, J.Y., Kim, Y.S. and Cha, D.R. J Am Soc Nephrology, Vol.17, p1362-1372, 2006.

 

40.

Efficient in vivo xenogeneic retroviral vector-mediated gene transduction into human Hepatocytes. Kentaro Emoto, Chise Tateno, Hiroshi Hino, Hironobu Amano, Yasuhiro Imaoka, Kinji Asahina, Toshimasa, Asahara, and Katsutoshi Yoshizato. Human Gene Therapy, Vol.16, p1168-1174, 2005.

 

41.

In vivo engineering of metabolically active hepatic tissue in a neovascularized subcutaneous cavity. Yokoyama, T., Ohashi, K., Kuge, H., Kanehiro, H., Iwata, H., Yamato, M., and Nakajima, Y. Am J Transplantation, Vol.6, p50-59, 2005.

 

42.

Effect of retinoic acid in experimental diabetic nephropathy. Han, S.Y., so, G.A., Jee, Y.H., Han, K.H., Kang, Y.S., Kim, H.K., Kang, S.W., Han, D.S., Han, J.Y., and Cha, D.R. Immunol Cell Biol, Vol.82, p568-576, 2004.

 

43.

Enhanced activity of serum and urinary hyaluronidases in streptozotocin-induced diabetic Wister and GK rats. Ikegami-Kawai, M., Okuda, R., Nemoto, T., Inada, N., and Takahashi, T. Glycobiology, Vol.14, p65-72, 2004.

 


产品列表
产品编号 产品名称 产品规格 产品等级 备注
638-04309 (AKRAL-121) LBIS® Mouse Albumin ELISA kit
LBIS® 小鼠白蛋白 ELISA试剂盒
96 tests
638-31931 (AKRAL-221)LBIS® Mouse Albumin ELISA KIT (2plate type) 96 tests×2
635-04319 (AKRAL-120)LBIS® Rat Albumin ELISA kit
LBIS® 大鼠白蛋白 ELISA试剂盒
96 tests
631-31921 (AKRAL-220)LBIS® Rat Albumin ELISA KIT (2plate type) 96 tests×2
638-25561 (AKRAL-021S)LBIS®  Albumin-Mouse(S-type)
LBIS®  小鼠尿白蛋白检测试剂盒(S型)TIA(含量)
60 tests
634-25301 (AKRAL-020S) LBIS®  Albumin-Rat(S-type)
LBIS®  大鼠尿白蛋白检测试剂盒(S型)TIA(含量)
60 tests

免责声明

1. 本公司密切关注本网站发布的内容,但不保证发布内容的准确性、完整性、可靠性和最新性等。

2. 本公司不保证使用本网站期间不会出现故障或计算机病毒污染的风险。

3. 无论何种原因,使用本网站时给用户或第三方造成的任何不利或损害,本公司概不负责。此外,对于用户与其他用户或第三方之间因本网站发生的任何交易、通讯

3. 纠纷,本公司概不负责。

4. 本网站可提供的所有产品和服务均不得用于人体或动物的临床诊断或治疗,仅可用于科研等非医疗目的。如任何用户将本网站提供的产品和服务用临床诊断或治

4. 疗,以及他特定的用途或行为,本公司概不保证其安全性和有效性,并且不负任何相关的法律责任。

LBIS® 小鼠/大鼠 高分子量脂联素 ELISA 试剂盒 LBIS® High Molecular Adiponectin-Mouse/Rat

产品中心 > 生命科学 > 疾病研究 > 代谢&糖尿病&肥胖症

LBIS® 小鼠/大鼠 高分子量脂联素 ELISA 试剂盒
LBIS® High Molecular Adiponectin-Mouse/Rat

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

LBIS® High Molecular Adiponectin-Mouse/RatLBIS® 小鼠/大鼠 高分子量脂联素 ELISA 试剂盒                              LBIS® High Molecular Adiponectin-Mouse/Rat

LBIS® 小鼠/大鼠 高分子量脂联素 ELISA 试剂盒

LBIS® 小鼠/大鼠 高分子量脂联素 ELISA 试剂盒                              LBIS® High Molecular Adiponectin-Mouse/Rat


Adiponectin(脂联素)是脂肪细胞分泌的一种细胞因子。作为脂肪细胞因子,控制脂肪代谢和胰岛素感受性、是抗糖尿病、抗动脉粥样硬化、抗炎症的重要物质。血液中的脂联素通过聚集单聚体形成3聚体、6聚体或者是 12-18 聚体。三聚体(LMW)通过胶原三螺旋链的非共价相互作用以及球状体 C1q 域的疏水相互作用形成。三聚体聚集形成六聚体(MMW)或者更大的多聚体(HMW)。

Adiponectin 与各种各样的生长因子相结合有明显的亲和性,将其隔离能影响细胞的生长、血管新生和细胞组织的重建。血液中 HMW 的测定值除了表示总脂联素以外,同时明确地反映出 BMI 和性别、体重减轻的影响、糖耐量、肝脏的胰岛素感受性、代谢综合征和2型糖尿病。预计 HMW 的测定比起总脂联素的测定,对于代谢综合征和 DM2 的分析更有帮助。

LBIS® 的此款试剂盒只用于测定高分子 Adiponectin。

◆特点

 

● 短时间测定(总的反应时间:4小时)

● 微量样品可测

● 使用对环境无害的防腐剂

● 全部试剂均为液体,可直接使用

● 精密的测定精度和高再现性

 

 

◆构成

 

组成部分

状态

容量

(A)   抗体固相化 96 孔板

洗净后使用

96 wells(8×12)/1块

(B)   标准溶液(2,000 ng/mL)

稀释后使用

200 μL/1 瓶

(C)   缓冲液

即用

60 mL/1 瓶

(D)   HRP标识抗脂联素抗体

稀释后使用

100 μL/1 瓶

(F)   显色液(TMB)

即用

12 mL/1 瓶

(H)   反应终止液(1M H2SO4)※小心轻放

即用

12 mL/1 瓶

( I ) 浓缩洗净液(10×)

稀释后使用

100 mL/1 瓶

封板膜

3 张

使用说明书

1 份

◆交叉反应

动物种类

对象物质

反应性和交叉率(%)

Mouse

Adiponectin(HMW)

100

Adiponectin(Hexamer)

<5

Adiponectin(Trimer)

不存在交叉反应

Adiponectin(Monomer)

不存在交叉反应

MCH

不存在交叉反应

TNF-α

不存在交叉反应

IFN-γ

不存在交叉反应

Insulin

不存在交叉反应

Leptin

不存在交叉反应

Rat

Adiponectin(HMW)

100

Adiponectin(Monomer)

不存在交叉反应

TNF-α

不存在交叉反应

IFN-γ

不存在交叉反应

Insulin

不存在交叉反应

Leptin

不存在交叉反应

※交叉率浓度为1,000 ng/mL

◆样品信息

小鼠/大鼠的血清•血浆•培养液

50 μL/well(稀释样品)

※血浆采血建议使用肝素处理

※正常样品的稀释倍数为50倍(~25倍)

 

◆测量范围

3.13~200 ng/mL(标准曲线范围)

78.25~5,000 ng/mL(25倍稀释样品)

0.1565~10 μg/mL(50倍稀释样品)

 

◆Validation data

精度测试(组内变异)

样品

A

B

1

29.5

129

2

30.7

125

3

29.8

128

4

29.0

126

5

29.6

126

mean

29.7

127

SD

0.631

1.89

CV(%)

2.12

1.49

单位:ng/mL

重复性测试(组间变异)

测量日/样品

C

D

E

第0天

196

126

62.5

第1天

192

130

59.1

第2天

196

125

60.7

第3天

190

125

60.3

mean

193

127

60.7

SD

2.63

2.27

1.41

CV(%)

1.36

1.79

2.33

单位:ng/mL n=2

加标回收测试

样品H

添加量

实测值

回收量

回收率(%)

0

68.5

35.0

103

34.5

98.6

65.0

132

63.5

97.7

95.0

165

96.9

102

单位:ng/mL n=2



样品I

添加量

实测值

回收量

回收率(%)

0

23.3

18.0

40.3

17.0

94.4

26.0

50.6

27.3

105

32.0

55.5

32.2

101

单位:ng/mL n=2

 

稀释直线性测试

用稀释缓冲液分3次连续稀释2个血清样品的测量结果,直线回归方程的 R在 0.9987~0.9993 之间。

参考文献



1.

Maternal intake of grape seed procyanidins during lactation induces insulin resistance and an adiponectin resistance-like phenotype in rat offspring. Caimari A, Marine-Casado R, Boque N, Crescenti A, Arola L, Del Bas JM. Sci Rep. 2017 Oct 3;7(1):12573.


2.

Effects of β-Glucan Content and Pearling of Barley in Diet-Induced Obese Mice. Seiichiro Aoe, Yasunori Ichinose, Noriko Kohyama, Kozo Komae, Asuka Takahashi, Toji Yoshioka, and Takashi Yanagisawa. Posted online on 27 Sep 2017.

https://doi.org/10.1094/CCHEM-04-17-0083-R

3.

The cannabinoid ligand LH-21 reduces anxiety and improves glucose handling in diet-induced obese pre-diabetic mice. Romero-Zerbo SY, Ruz-Maldonado I, Espinosa-Jimenez V, Rafacho A, Gomez-Conde AI, Sanchez-Salido L, Cobo-Vuilleumier N, Gauthier BR, Tinahones FJ, Persaud SJ, Bermudez-Silva FJ. Sci Rep. 2017 Jun 21;7(1):3946.


4.

Moringa oleifera from Cambodia Ameliorates Oxidative Stress, Hyperglycemia, and Kidney Dysfunction in Type 2 Diabetic Mice. Tang Y, Choi EJ, Han WC, Oh M, Kim J, Hwang JY, Park PJ, Moon SH, Kim YS, Kim EK. J Med Food. 2017 May;20(5):502-510


5.

Gelidium amansii extract ameliorates obesity by down-regulating adipogenic transcription factors in diet-induced obese mice. Kang JH, Lee HA, Kim HJ, Han JS. Nutr Res Pract. 2017 Feb;11(1):17-24.


6.

Oleuropein aglycone enhances UCP1 expression in brown adipose tissue in high-fat-diet-induced obese rats by activating β-adrenergic signaling. Oi-Kano Y, Iwasaki Y, Nakamura T, Watanabe T, Goto T, Kawada T, Watanabe K, Iwai K. J Nutr Biochem. 2017 Feb;40:209-218.


7.

Mild Hyperbaric Oxygen Inhibits Growth-related Decrease in Muscle Oxidative Capacity of Rats with Metabolic Syndrome. Takemura A, Ishihara A. J Atheroscler Thromb. 2017 Jan 1;24(1):26-38.


8.

Germinated Pigmented Rice (Oryza Sativa L. cv. Superhongmi) Improves Glucose and Bone Metabolisms in Ovariectomized Rats. Chung SI, Ryu SN, Kang MY. Nutrients. 2016 Oct 21;8(10).


9.

Sodium alginate prevents progression of non-alcoholic steatohepatitis and liver carcinogenesis in obese and diabetic mice. Miyazaki T, Shirakami Y, Kubota M, Ideta T, Kochi T, Sakai H, Tanaka T, Moriwaki H, Shimizu M. Oncotarget. 2016 Mar 1;7(9):10448-58.


10.

Biotin augments acetyl CoA carboxylase 2 gene expression in the hypothalamus, leading to the suppression of food intake in mice. Sone H, Kamiyama S, Higuchi M, Fujino K, Kubo S, Miyazawa M, Shirato S, Hiroi Y, Shiozawa K. Biochem Biophys Res Commun. 2016 Jul 29;476(3):134-9.


11.

Reduced rat plasma lysophosphatidylglycerol or lysophosphatidic acid level as a biomarker of aristolochic acid-induced renal and adipose dysfunctions. Tsutsumi T, Okamoto Y, Yamakawa S, Bingjun C, Ishihara A, Tanaka T, Tokumura A. Life Sci. 2016 Jul 15;157:208-16.


12.

Fermentation of purple Jerusalem artichoke extract to improve the α-glucosidase inhibitory effect in vitro and ameliorate blood glucose in db/db mice. Wang Z, Hwang SH, Lee SY, Lim SS. Nutr Res Pract. 2016 Jun;10(3):282-7.


13.

Anti-diabetic effects of luteolin and luteolin-7-O-glucoside on KK-Ay mice. Zang Y, Igarashi K, Li Y. Biosci Biotechnol Biochem. 2016 May 12:1-7.


14.

The combination of maternal and offspring high-fat diets causes marked oxidative stress and development of metabolic syndrome in mouse offspring. Ito J, Nakagawa K, Kato S, Miyazawa T, Kimura F, Miyazawa T. Life Sci. 2016 Apr 15;151:70-5.


15.

Wasabi leaf extracts attenuate adipocyte hypertrophy through PPARγ and AMPK. Oowatari Y, Ogawa T, Katsube T, Iinuma K, Yoshitomi H, Gao M. Biosci Biotechnol Biochem. 2016 May 3:1-8.


16.

Biotin augments acetyl CoA carboxylase 2 gene expression in the hypothalamus, leading to the suppression of food intake in mice. Sone H, Kamiyama S, Higuchi M, Fujino K, Kubo S, Miyazawa M, Shirato S, Hiroi Y, Shiozawa K. Biochem Biophys Res Commun. 2016 May 12


17.

Oral administration of Aloe vera gel powder prevents UVB-induced decrease in skin elasticity via suppression of overexpression of MMPs in hairless mice. Saito M, Tanaka M, Misawa E, Yao R, Nabeshima K, Yamauchi K, Abe F, Yamamoto Y, Furukawa F. Biosci Biotechnol Biochem. 2016 Apr 4:1-9.


18.

The combination of maternal and offspring high-fat diets causes marked oxidative stress and development of metabolic syndrome in mouse offspring. Ito J, Nakagawa K, Kato S, Miyazawa T, Kimura F, Miyazawa T. Life Sci. 2016 Apr 15;151:70-75.


19.

Total and high molecular weight adiponectin levels in the rat model of post-myocardial infarction heart failure. Kalisz M, Baranowska B, Wolinska-Witort E, Maczewski M, Mackiewicz U, Tulacz D, Gora M, Martynska L, Bik W. J Physiol Pharmacol. 2015 Oct;66(5):673-80.


20.

Anti-obese and anti-diabetic effects of a mixture of daidzin and glycitin on C57BL/6J mice fed with a high-fat diet. Zang Y, Igarashi K, Yu C. Biosci Biotechnol Biochem. Vol.79(1), p117-23, 2015.


21.

Dietary Administration of Aloe Vera Gel Extract Inhibits Intestinal Polyp Formation in Min Mice Fed a High-Fat Diet. Chihara T, Shimpo K, Beppu H, Kaneko T, Higashiguchi T, Sonoda S, Tanaka M, Yamada M and Abe. Pharm Anal Acta 2015, 6:3


22.

Preventive effects of astaxanthin on diethylnitrosamine-induced liver tumorigenesis in C57/BL/KsJ-db/db obese mice. Ohno T, Shimizu M, Shirakami Y, Miyazaki T, Ideta T, Kochi T, Kubota M, Sakai H, Tanaka T, Moriwaki H. Hepatol Res. Jul 2015.


23.

Effects of liquid konjac on parameters related to obesity in diet-induced obese mice. Aoe S, Kudo H, Sakurai S. Biosci Biotechnol Biochem. Vol.79(7), p1141-6, Jul 2015.


24.

The anti-obesity and anti-diabetic effects of kaempferol glycosides from unripe soybean leaves in high-fat-diet mice. Zang Y, Zhang L, Igarashi K, Yu C. Food Funct. Vol.11;6(3), p834-41, Mar 2015.


25.

Ashitaba (Angelica keiskei) extract prevents adiposity in high-fat diet-fed C57BL/6 mice. Zhang T, Yamashita Y, Yasuda M, Yamamoto N, Ashida H. Food Funct. Vol.6(1), p134-144, Jan 2015.


26.

Anti-obese and anti-diabetic effects of a mixture of daidzin and glycitin on C57BL/6J mice fed with a high-fat diet. Zang Y, Igarashi K, Yu C. Bioscience, Biotechnology, and Biochemistry, Vol.79(1), 2015.


27.

Oolong, black and pu-erh tea suppresses adiposity in mice via activation of AMP-activated protein kinase. Yamashita Y, Wang L, Wang L, Tanaka Y, Zhang T, Ashida H. Food Funct. Vol.5(10), p2420-29, Oct 2014.


28.

Functional ingredients and cardiovascular protective effect of pumpkin seed oils. Al-Okbi SY., Mohamed DA., Kandi E., Ahmed EK., Mohammed SE. Source: Grasas y Aceites, Vol.65(1), p1-10, Jan-Mar 2014.


29.

The novel dipeptidyl peptidase-4 inhibitor teneligliptin prevents high-fat diet-induced obesity accompanied with increased energy expenditure in mice. Fukuda-Tsuru S., Kakimoto T., Utsumi H., Kiuchi S., Ishi S. European Journal of Pharmacology, Vol.723(15), p207-215, Jan 2014.


30.

Non-alcoholic steatohepatitis and preneoplastic lesions develop in the liver of obese and hypertensive rats: Suppressing effects of EGCG on the development of liver lesions. Kochi T., Shimizu M, Terakura D., Baba A., Ohno T., Kubota M., Shirakami Y., Tsurumi H., Tanaka T., Moriwaki H. Cancer Letters, Vol342(1), p60-69, Jan 2014.


31.

Anti-glycation Activity of Japanese Chestnut (Castanea crenata) Inner Skin Extract is Beneficial for Type 2 Diabetes in a Rat Model. Mizutani T., Shizuka F., Matsuzawa T., Amano Y., Arikawa Y. Anti-Aging Medicine, Vol.10(6), p112-119, 2014.


32.

Chronic Administration of Bovine Milk-Derived α-Lactalbumin Improves Glucose Tolerance via Enhancement of Adiponectin in Goto-Kakizaki Rats with Type 2 Diabetes. Yamaguchi M., Takai S. Biological and Pharmaceutical Bulletin, Vol.37(2014) No.3, p.404-408, 2014.


33.

Effects of Sleeve Gastrectomy on Lipid Metabolism in an Obese Diabetic Rat Model. Kawano, Y., Ohta, M., Hirashita, T., Masuda, T., Inomata, M., Kitano. S. Obesity Surgery, Vol.23(12), p1947-1956, Dec 2013.


34.

Quercetin glucosides promote ischemia-induced angiogenesis, but do not promote tumor growth. Sumi M., Tateishi N., Shibata H., Ohki T., Sat M. Life Sciences, Vol.93(22), p814-819, Nov 2013.


35.

I ntake of mulberry 1-deoxynojirimycin prevents diet-induced obesity through increases in adiponectin in mice. Tsuduki T., Kikuchi I., Kimura T., Nakagawa K., Miyazawa T. Food Chemistry, Vol.139(1-4), p16-23, Aug 2013.


36.

Effects of Sleeve Gastrectomy on Lipid Metabolism in an Obese Diabetic Rat Model. Y.Kawano, M.Ohta, T.Hirashita, T.Masuda, M.Inomata, S.Kitano. Obesity Surgery, Jul 2013.


37.

Rosehip Extract Inhibits Lipid Accumulation in White Adipose Tissue by Suppressing the Expression of Peroxisome Proliferator-activated Receptor Gamma. Nagatomo A., Nishida N., Matsuura Y.and Shibata N. Prev Nutr Food Sci, Vol.18(2), p85-91, Jun 2013.


38.

Glucose Use in Fasted Rats Under Sevoflurane Anesthesia and Propofol Anesthesia. K.Sato, T.Kitamura, G.Kawamura, Y.Mori, R.Sato, Y.Araki, Y.Yamada. Anesth Analg, Jun 2013.


39.

Supplementing Obese Zucker Rats with Niacin Induces the Transition of Glycolytic to Oxidative Skeletal Muscle Fibers. Ringseis R., Rosenbaum S., Gessner D.K., Herges L., Kubens J.F., Mooren F-C., Kruger K. and Eder K. J.Nutr, Vol.143(2), p125-131, Feb 2013.


40.

Quercetin intake during lactation modulates the AMP-activated protein kinase pathway in the livers of adult male rat offspring programmed by maternal protein restriction. Sato S., Mukai Y., Saito T. The Journal of Nutritional Biochemistry, Vol.24(1), p118-123, Jan 2013.


41.

Azuki bean polyphenols intake during lactation upregulate AMPK in male rat offspring exposed to fetal malnutrition. Mukai Y,Sun Y, Sato S. Nutrition, Vol.29(1), p291-297, Jan 2013.


42.

Effect of Angiotensin II Type 2 Receptor-Interacting Protein on Adipose Tissue Function via Modulation of Macrophage Polarization. F.Jing, M.Mogi, L.-J.Min, K.Ohshima, H.Nakaoka, K.Tsukuda, X.Wang, J.Iwanami, M.Horiuchi. PLOS one, 2013.


43.

Prevention mechanisms of glucose intolerance and obesity by cacao liquor procyanidin extract in high-fat diet-fed C57BL/6 mice. Y. Yamashita., M. Okabe., M. Natsume., H. Ashida. Archives of Biochemistry and Biophysics, Mar 2012.


44.

High-fat diet-induced reduction of peroxisome proliferator-activated receptor-γ coactivator-1α messenger RNA levels and oxidative capacity in the soleus muscle of rats with metabolic syndrome. F. Nagatomo., H. Fujino., H. Kondo., I. Takeda., K. Tsuda., A. Ishihara. Nutrition Research, Vol.32(2), p144-151, Feb 2012.


45.

Oral Ingestion of Aloe vera Phytosterols Alters Hepatic Gene Expression Profiles and Ameliorates Obesity-Associated Metabolic Disorders in Zucker Diabetic Fatty Rats. E. Misawa., M. Tanaka., K. Nomaguchi., K. Nabeshima., M. Yamada., T. Toida., and K. Iwatsuki. J. Agric. Food Chem., Vol.60 (11), p2799-2806, 2012.


46.

The effects of running exercise on oxidative capacity and PGC-1α mRNA levels in the soleus muscle of rats with metabolic syndrome. F. Nagatomo., H. Fujino., H. Kondo., M. Kouzaki., N. Gu., I. Takeda., K. Tsuda., and A. Ishihara. The Journal of Physiological Sciences, Vol. 62, p105-114, Nov 2012.


47.

Roles of Interleukin 17 in Angiotensin II Type 1 Receptor-Mediated Insulin Resistance. K. Ohshima., M. Mogi., F. Jing., J. Iwanami., K. Tsukuda., L-J. Min., J. Higaki., M. Horiuchi. American Heart Association. Hypertension. Vol.59, p493-499, 2012.


48.

A Comparative Study of Gastric Banding and Sleeve Gastrectomy in an Obese Diabetic Rat Model. T. Masuda., M. Ohta., T. Hirashita., Y. Kawano., H. Egucji., K. Yada., Y. Iwashita., S. Kitano. Obesity Surgery, Aug 2011.


49.

Anti-Diabetic Effects of a Kaempferol Glycoside-Rich Fraction from Unripe Soybean (Edamame,Glycine max L.Merrill.’Jindai’) Leaves on KK-Ay Mice. Y. Zang., H. Sato., K. Igarashi. Biosci.Biotechnol.Biochem, Vol.75(9), p1677-1684, 2011.


50.

Effects of visceral fat resection and gastric banding in an obese diabetic rat model. T. Hirashita., M. Ohta., Y. Endo., T. Masuda., Y. Iwashita., S. Kitano. Surgery, Vol.151(1), p6-12, 2012.


51.

Preventive Effects of Curcumin on the Development of Azoxymethane-Induced Colonic Preneoplastic Lesions in Male C57BL/KsJ-db/db Obese Mice. M. Kubota., M. Shimizu., H. Sakai., Y. Yasuda., D. Terakura., A. Baba., T. Ohno., H. Tsurumi., T. Tanaka., H. Moriwaki. Nutrition and Cancer, Vol.64(1), 2012.


52.

Preventive Effects of Curcumin on the Development of Azoxymethane-Induced Colonic Preneoplastic Lesions in Male C57BL/KsJ-db/db Obese Mice. M. Kubota., M. Shimizu., H. Sakai., Y. Yasuda., D. Terakura., A. Baba., T. Ohno., H. Tsurumi., T. Tanaka., H. Moriwaki. Nutrition and Cancer, Vol.64(1), 2012.


53.

Antihyperlipidemic and Body Fat-Lowering Effects of Silk Proteins with Different Fibroin/Sericin Compositions in Mice Fed with High Fat Diet. Chung-Won Seo,In Chul Um,Catherine W.Rico,and Mi Young Kang. J.Agric.Food Chem. Vol.59, p4192-4197, 2011.


54.

Trehalose prevents adipocyte hypertrophy and mitigates insulin resistance. C,Arai.,N,Arai.,A,Mizote.,K,Kohno.,K,Iwaki.,T,Hanaya.,S,Arai.,S,Ushio.,S,Fukuda. Nutrition Research, Vol.30(12), p840-848, 2010.


55.

Combined Effects of Short-term Calorie Restriction and Exercise on Insulin Action in Normal Rats. H,Y,Jiang.,T,Koike.,P,Li.,Z,H,Wang.,Y,Kawata.,Y,Oshida. Horm Metab Res,  Vol.42(13), p950-954, 2010.


56.

Dietary Hesperidin Exerts Hypoglycemic and Hypolipidemic Effects in Streptozocin-Induce Marginal Type 1 Diabetic Rats. Akiyama,S., Katsumata,S., Suzuki,K., Ishimi,Y.,Wu,J., and Uehara,M. J Clin Biochem Nutr.January, Vol.46(1), p87-92, 2010.


57.

Hypoglycemic and Hypolipidemic Effects of Hesperidin and Cyclodextrin-Clathrated Hesperetin in Goto-Kakizaki Rats with Type 2 Diabetes. Akiyama,S., Katsumata,S., Suzuki,K., Nakayama,Y., Ishimi,Y. and Uehara,M. Bioscience,Biotechnology,and Biochemistry. Vol.73, No.12, p2779-2782, 2009.



产品列表

产品编号 产品名称 产品规格 产品等级 备注
638-13079 (AKMAN-011)LBIS® Mouse/Rat HMW Adiponectin ELISA Kit
LBIS® 小鼠/大鼠 高分子量脂联素 ELISA试剂盒
96 tests

免责声明

1. 本公司密切关注本网站发布的内容,但不保证发布内容的准确性、完整性、可靠性和最新性等。

2. 本公司不保证使用本网站期间不会出现故障或计算机病毒污染的风险。

3. 无论何种原因,使用本网站时给用户或第三方造成的任何不利或损害,本公司概不负责。此外,对于用户与其他用户或第三方之间因本网站发生的任何交易、通讯

3. 纠纷,本公司概不负责。

4. 本网站可提供的所有产品和服务均不得用于人体或动物的临床诊断或治疗,仅可用于科研等非医疗目的。如任何用户将本网站提供的产品和服务用临床诊断或治

4. 疗,以及他特定的用途或行为,本公司概不保证其安全性和有效性,并且不负任何相关的法律责任。

LBIS® 小鼠瘦素 ELISA 试剂盒 LBIS® Leptin-Mouse

产品中心 > 生命科学 > 疾病研究 > 代谢&糖尿病&肥胖症

LBIS® 小鼠瘦素 ELISA 试剂盒
LBIS® Leptin-Mouse

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

LBIS® Leptin-MouseLBIS® 小鼠瘦素 ELISA 试剂盒                              LBIS® Leptin-Mouse

LBIS® 小鼠瘦素 ELISA 试剂盒

  瘦素(Leptin)是一种分子量为16KD的蛋白质类激素。主要由白色脂肪组织产生,其它组织如褐色脂肪组织、胎盘、卵巢、骨骼肌、胃底部、乳腺上皮细胞、骨髓、下垂体、肝脏等也能检测到。其在大鼠和小鼠中有97%的同源性。瘦素在突变种肥胖小鼠中发现,是通过调节食欲和新陈代谢来参与至能量平衡的一种重要的激素。血液中瘦素的浓度会因为空腹和低热量饮食而降低,但进食后并不会有明显增加,只有肥胖即脂肪组织量增大的情况下才会增加,可反映身体脂肪量。瘦素进入大脑,通过抑制体内下丘脑神经肽Y(NPY)和刺鼠基因相关蛋白(AgRP)表达神经的受体,另外活化体内 α-MSH 表达神经,起到降低食欲,减少进食的作用。但是,对于严重肥胖的人,虽然他们血液中瘦素的浓度很高,但对瘦素有抗性,瘦素并不能发挥抑制食欲的作用。全身性脂肪萎缩病引起的瘦素降低或缺乏,会造成胰岛素抗性、糖尿病、脂肪肝、高甘油三酯血症等疾病。除此之外,瘦素也被认为与对动脉粥样硬化的免疫反应、能量平衡和性周期相关,与肺泡表面活性剂的产生也有关系。

◆特点

 • 短时间测定(总的反应时间:3小时)

 • 微量样品(标准操作:10 μL)可测

 • 使用对环境无害的防腐剂

 • 全部试剂均为液体,可直接使用

 • 精密的测定精度和高再现性

◆构成

 

组成

状态

容量

(A)抗体固相化 96 孔板(干燥孔板)

洗净后使用

96 wells(8×12)/1 块

(B)瘦素标准溶液(小鼠)(5,000 pg/mL)

稀释后使用

500 μL/1 瓶

(C)缓冲液

即用

60 mL/1 瓶

(D)生物素结合抗瘦素抗体

稀释后使用

200 μL/1 瓶

(E)过氧化物・抗生物素蛋白结合物

稀释后使用

200 μL/1 瓶

(F)显色液(TMB)

即用

12 mL/1 瓶

(H)反应终止液(1M H2SO4)※小心轻放

即用

12 mL/1 瓶

( I )浓缩洗净液(10×)

稀释后使用

100 mL/1 瓶

封板膜

3 张

使用说明书

1 份

◆交叉反应

 ※交叉反应是浓度为 3,000 pg/m时的数据

动物种类

对象物质

反应性和反应率(%)

Mouse

Leptin

100

α-MSH

IFN-γ

MCH

TNF-α

Rat

Leptin

31.5

Human

Lepin

+:存在交叉反应

―:不存在交叉反应

◆样品信息

小鼠的血清、血浆

10 μL/well(标准操作)

※样品量在10~50 μL范围内可以配制

 

◆测量范围

20.6~5,000 pg/mL(样品量50 μL

103~25,000 pg/mL(样品量10 μL

◆Validation data

精度测试(组内变异)

样品

A

B

C

1

3818

846

405

2

3810

856

405

3

3979

842

394

4

4047

851

392

5

4046

856

420

mean

3940

850

403

SD

118

6.18

11.2

CV(%)

3.0

0.73

2.8

单位:pg/mL

重复性测试(组间变异)

测量日/样品

D

E

第0天

5007

1052

第1天

5126

1063

第2天

5069

1027

第3天

5000

1000

mean

5051

1035

SD

59.3

28.0

CV(%)

1.2

2.7

单位:pg/mL n=2

加标回收测试

样品F

添加量

实测值

回收量

回收率(%)

0.00

994.9

337

1334.0

339.1

101

1061

2099.0

1104

104

1238

2284.0

1289

104

单位:pg/mL n=2

样品G

添加量

实测值

回收量

回收率(%)

0.00

1996

2731

4741

2745

101

4682

6444

4448

95.0

5462

7717

5721

105

单位:pg/mL n=2

稀释直线性测试

用稀释缓冲液分5次连续稀释2个血清样品的测量结果,线性回归方程的R2在0.9992~0.9997之间。

欲了解更多相关产品信息,请点击文字:LBIS® 疾病相关动物模型ELISA试剂盒系列


参考文献



 1.

Inhibition of Gastric Inhibitory Polypeptide Receptor Signaling in Adipose Tissue Reduces Insulin Resistance and Hepatic Steatosis in High-Fat Diet-Fed Mice. Joo E, Harada N, Yamane S, Fukushima T, Taura D, Iwasaki K, Sankoda A, Shibue K, Harada T, Suzuki K, Hamasaki A, Inagaki N. Diabetes. 2017 Apr;66(4):868-879 


 2.

DNA Methylation Suppresses Leptin Gene in 3T3-L1 Adipocytes. Kuroda M, Tominaga A, Nakagawa K, Nishiguchi M, Sebe M, Miyatake Y, Kitamura T, Tsutsumi R, Harada N, Nakaya Y, Sakaue H. PLoS One. 2016 Aug 5;11(8):e0160532.


 3.

Sodium alginate prevents progression of non-alcoholic steatohepatitis and liver carcinogenesis in obese and diabetic mice. Miyazaki T, Shirakami Y, Kubota M, Ideta T, Kochi T, Sakai H, Tanaka T, Moriwaki H, Shimizu M. Oncotarget. 2016 Mar 1;7(9):10448-58.


 4.

Comparison of two Kampo medicines in a diet-induced mouse obesity model. Fengying Gao, Satoru Yokoyama, Makoto Fujimoto, Koichi Tsuneyama, Ikuo Saiki, Yutaka Shimada andYoshihiro Hayakawa. Traditional & Kampo Medicine, Volume 2, Issue 2, pages 60–66, September 2015


 5.

Effect of Keishibukuryogan on Genetic and Dietary Obesity Models. Fengying Gao, Satoru Yokoyama, Makoto Fujimoto, Koichi Tsuneyama, Ikuo Saiki, Yutaka Shimada, and Yoshihiro Hayakawa. Evid Based Complement Alternat Med. 2015; 2015: 801291.


 6.

Overexpression of the adiponectin gene mimics the metabolic and stress resistance effects of calorie restriction, but not the anti-tumor effect. Kamohara R, Yamaza H, Tsuchiya T, Komatsu T, Park S, Hayashi H, Chiba T, Mori R, Otabe S, Yamada K, Nagayasu T, Shimokawa I. Exp Gerontol. 2015 Apr;64:46-54.


 7.

Preventive effects of astaxanthin on diethylnitrosamine-induced liver tumorigenesis in C57/BL/KsJ-db/db obese mice. Ohno T, Shimizu M, Shirakami Y, Miyazaki T, Ideta T, Kochi T, Kubota M, Sakai H, Tanaka T, Moriwaki H. Hepatol Res. Jul 2015.


 8.

Sudachitin, a polymethoxylated flavone, improves glucose and lipid metabolism by increasing mitochondrial biogenesis in skeletal muscle. Tsutsumi R, Yoshida T, Nii Y, Okahisa N, Iwata S,Tsukayama M, Hashimoto R, Taniguchi Y, Sakaue H, Hosaka T, Shuto E, Sakai T. 

Nutrition & Metabolism, 11:32, Jul 2014.


 9.

Type 2 diabetic conditions in Otsuka Long-Evans Tokushima Fatty rats are ameliorated by 5-aminolevulinic acid. Sato T, Yasuzawa T, Uesaka A, Izumi Y, Kamiya A, Tsuchiya K, Kobayashi Y, Kuwahata M, Kido Y. Nutr Res. Vol.34(6), p544-551, Jun 2014.


10.

Inhibitory Effects of Japanese Herbal Medicines Sho-saiko-to and Juzen-taiho-to on Nonalcoholic Steatohepatitis in Mice. Takahashi Y, Soejima Y, Kumagai A, Watanabe M, Uozaki H, Fukusato T. PLoS One. 2014 Jan 22;9(1):e87279.


11.

Down-Regulation of Hepatic Stearoyl-CoA Desaturase-1 Expression by Fucoxanthin via Leptin Signaling in Diabetic/Obese KK-A y Mice. Beppu F., Hosokawa M., Yim M-J., Shinoda T., Miyashita K. Lipids, Vol.48(5), p449-455, May 2013.


12.

Dietary Combination of Fish Oil and Taurine Decreases Fat Accumulation and Ameliorates Blood Glucose Levels in Type 2 Diabetic/Obese KK-Ay Mice. N. Mikami., M. Hosokawa., K. Miyashita. Journal of Food Science, Vol. 77(6), pH114-H120, Jun 2012.


13.

Effects of Gametophytes of Ecklonia Kurome on the Levels of Glucose and Triacylglycerol in db/db, Prediabetic C57BL/6J and IFN-γ KO Mice. F. Dwiranti., M. Hiraoka., T. Taguchi., Y. Konishi., M. Tominaga., A. Tominaga. Int J B 64 iomed Sci, Vol.8, No.1, Mar 2012.


14.

Overexpression of FoxO1 in the Hypothalamus and Pancreas Causes Obesity and Glucose Intolerance. H.-J. Kim., M. Kobayashi., T. Sasaki., O. Kikuchi., K. Amano., T. Kitazumi., Y.-S. Lee., H. Yokota-Hashimoto., V. Y. Susanti., Y. Ido Kitamura., J. Nakae., and T. Kitamura. Endocrinology, Vol.153, No.2, p659-671, Feb 2012.


15.

Spirulina improves non-alcoholic steatohepatitis, visceral fat macrophage aggregation, and serum leptin in a mouse model of metabolic syndrome. M. Fujimoto., K. Tsuneyama., T. Fujimoto., C. Selmid., 

M. E. Gershwin., Y. Shimada. Digestive and Liver Disease, 2012.


16.

Prevention mechanisms of glucose intolerance and obesity by cacao liquor procyanidin extract in high-fat diet-fed C57BL/6 mice. Y. Yamashita., M. Okabe., M. Natsume., H. Ashida. Archives of 

Biochemistry and Biophysics, 2012.


17.

Preventive Effects of Curcumin on the Development of Azoxymethane-Induced Colonic Preneoplastic Lesions in Male C57BL/KsJ-db/db Obese Mice. M. Kubota., M. Shimizu., H. Sakai., Y. Yasuda., D. Terakura., A. Baba., T. Ohno., H. Tsurumi., T. Tanaka., H. Moriwaki. Nutrition and Cancer, Vol. 64(1), 2012.


18.

Caffeic Acid Phenethyl Ester Suppresses the Production of Adipocytokines, Leptin, Tumor Necrosis Factor -Alpha and Resistin, during Differentiation to Adipocytes in 3T3-L1 Cells. S, Juman., N, Yasui., H, Okuda., A,Ueda., H, Negishi., T, Miki. and K, Ikeda. Biological and Pharmaceutical Bulletin Vol. 34 (2011) , No.4, 490.


19.

Mate Tea(Ilex paraguariensis)Promotes Satiety and Body Weight Lowering in Mice:Involvement of Glucagon-Like Peptide-1. G, M, E, Hussein., H, Matsuda., S, Nakamura., M, Hamao., T, Akiyama., K, Tamura., and M, Yoshikawa. Biol.Pharm.Bull. Vol.34(12), p1849-1855, 2011.



产品列表

产品编号 产品名称 产品规格 产品等级 备注
631-10389  (AKRLP-011)LBIS® Mouse Leptin ELISA kit
LBIS®小鼠瘦素 ELISA试剂盒 
96 tests

免责声明

1. 本公司密切关注本网站发布的内容,但不保证发布内容的准确性、完整性、可靠性和最新性等。

2. 本公司不保证使用本网站期间不会出现故障或计算机病毒污染的风险。

3. 无论何种原因,使用本网站时给用户或第三方造成的任何不利或损害,本公司概不负责。此外,对于用户与其他用户或第三方之间因本网站发生的任何交易、通讯

3. 纠纷,本公司概不负责。

4. 本网站可提供的所有产品和服务均不得用于人体或动物的临床诊断或治疗,仅可用于科研等非医疗目的。如任何用户将本网站提供的产品和服务用临床诊断或治

4. 疗,以及他特定的用途或行为,本公司概不保证其安全性和有效性,并且不负任何相关的法律责任。

LBIS® 小鼠 C-肽 ELISA 试剂盒(U型) LBIS® C-Peptide-Mouse (U type)

产品中心 > 生命科学 > 疾病研究 > 代谢&糖尿病&肥胖症

LBIS® 小鼠 C-肽 ELISA 试剂盒(U型)
LBIS® C-Peptide-Mouse (U type)

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

LBIS® C-Peptide-Mouse (U type)LBIS® 小鼠 C-肽 ELISA 试剂盒(U型)                              LBIS® C-Peptide-Mouse (U type)

LBIS® 小鼠 C-肽 ELISA 试剂盒(U 型)

  胰岛素是细胞中的单链胰岛素原合成后,形成二硫键,通过酶分解激活,裂解成肽与胰岛素。小鼠、大鼠的胰岛素的氨基酸序列相同,但肽部分稍有不同。小鼠C肽1是 29 个氨基酸,2是 31 个的单链肽。肽是从胰岛素原分离后,与胰岛素一同分泌生成的。长期以来,人们一直认为肽没有生物活性,仅在合成胰岛素过程中,保证A链和B链正确折叠以及二硫键正确配对时起作用。近年,随着研究的不断深入,证明了肽具有多种生物学作用。首先,10-9M 的肽能与内皮细胞、肾小管上皮细胞和成纤维细胞表面的G蛋白偶联受体结合。激活细胞中钙离子依赖性的信号、激活 Na-K-ATPase、促进内皮细胞的 NO 合成、与受体的结合有立体结构特异性;与胰岛素、胰岛素原、IGF-I、-II、NPY 之间无交叉反应。而且通过对缺少肽的Ⅰ型糖尿病患者注射肽类药物,能起到增强骨骼肌以及皮肤的血液循环、降低肾小球超滤的风险、抑制白蛋白从尿液中的排泄、改善神经机能的作用。但对身体健康的人来说,这类药物没有此等功效。因此,建议Ⅰ型糖尿病患者可以在注射胰岛素的同时,投放肽,有利于防止并发症的发生。

  肽的末端的五肽(27-31)在与受体的结合中起着重要的作用,缺少这部分的 Des(27-31)肽就会失去它的作用。这种五肽可以完全取代肽和受体的结合,激活 Na+-K+ATPase。有报告指出新生大鼠中 Des(27-31)肽的存在量约占肽总量的37%,而在成年大鼠中只占8.5%。

  肽在血液中的寿命是胰岛素的好几倍。在临床上,可以通过测量肽在血液中的浓度来观察胰岛素的合成和分泌功能。且肽在尿液中多量排除,一定程度上与血液中肽的平均值相关,所以也可以通过尿液来检测。

  作为人工胰岛中胰岛素分泌的指标,肽测量是有效的。由于在培养液中经常添加胰岛素,如果要测量培养后培养液中的胰岛素的话,就不能很好地区别出分泌的胰岛素和添加的胰岛素,必须减掉培养开始时胰岛素的量。这种情况下,如果分泌的胰岛素量过少,测量误差的影响会增大,从而不能做出正确的判断。这时候,如果测量肽,因为肽与胰岛素是等摩尔分泌的,所以能够正确判断分泌的胰岛素。

  本公司的整套产品能够识别肽1、2的交叉部分,可以测量肽的总量。

◆特点

● 短时间测定(完全反应时间:5小时)

● (标准用量 10 μL)可测

● 使用对环境无害的防腐剂

● 全部试剂均为液体,可直接使用

● 精密的测定密度和高再现性

◆构成

组成

状态

容量

(A) 抗体固相化   96 孔板

洗净后使用

96 wells(8×12)/1 块

(B) 标准溶液(6,000 pg/mL)

稀释后使用

500 μL/1 瓶

(C) 缓冲液

即用

60 mL/1 瓶

(D) 抗C-肽抗体生物素结合

稀释后使用

100 μL/1 瓶

(E) 过氧化物・抗生物素蛋白结合物

稀释后使用

100 μL/1 瓶

(F) 显色液(TMB)

即用

12 mL/1 瓶

(H) 反应停止液(1M   H2SO4)※小心轻放

即用

12 mL/1 瓶

( I ) 浓缩洗净液(10×)

稀释后使用

100 mL/1 瓶

封板膜

4 张

使用说明书

1 份

◆样本

小鼠的血清或血浆

10 μL/well(用本品配备的缓冲液稀释后、50 μ分注在孔板中。)

◆测定范围

46.9~3,000 pg/mL(标准曲线范围)

234.5~15,000 pg/mL(检体量 10 μL 的时候)

◆Validation data

 

精度测试(组内变异)

 

样本

A

B

1

976

238

2

969

230

3

965

230

4

1023

235

5

977

231

6

1018

228

7

1038

229

8

995

225

mean

995

231

SD

27.7

4.10

CV(%)

2.78

1.78

单位:pg/mL

重复性测试(组间变异)

 

测量日/检体

C

D

E

第0天

1502

301

60.9

第1天

1500

302

63.8

第2天

1499

301

62.2

第3天

1501

300

58.8

mean

1500

301

61.4

SD

1.12

0.66

2.13

CV(%)

0.07

0.22

3.46

单位:pg/mL, n=4

加标回收测试

 

样本F

添加量

实测值

回收量

回收率(%)

0.00

300

265

551

250

94

398

683

382

96

531

827

527

99

单位:pg/mL, n=2

样本G

添加量

实测值

回收量

回收率(%)

0.00

58.2

28.9

86.7

28.5

99

38.6

98.2

40.0

104

77.4

139

80.8

104

单位:pg/mL, n=2

稀释直线性测试

用稀释缓冲液分三次连续稀释2个血清检体的结果,直线回归方程的 R是 1.00 。

欲了解更多相关产品信息,请点击文字:LBIS® 疾病相关动物模型ELISA试剂盒系列


参考文献


 1.

Inhibition of Gastric Inhibitory Polypeptide Receptor Signaling in Adipose Tissue Reduces Insulin Resistance and Hepatic Steatosis in High-Fat Diet-Fed Mice. Joo E, Harada N, Yamane S, Fukushima T, Taura D, Iwasaki K, Sankoda A, Shibue K, Harada T, Suzuki K, Hamasaki A, Inagaki N. Diabetes. 2017 Apr;66(4):868-879.


 2.

Inhibition of Gastric Inhibitory Polypeptide Receptor Signaling in Adipose Tissue Reduces Insulin

Resistance and Hepatic Steatosis in High Fat Diet-Fed Mice. Joo E, Harada N, Yamane S, Fukushima

T, Taura D, Iwasaki K, Sankoda A, Shibue K, Harada T, Suzuki K, Hamasaki A, Inagaki N. Diabetes.

2017 Jan 17.


 3.

Insulin Release from the Beta Cells in Acatalasemic Mice Is Highly Susceptible to Alloxan-Induced Oxidative Stress. Kazunori Takemoto, Wakana Doi, Ken Kataoka, Kohji Ishihara, Da-Hong Wang, Hitoshi Sugiyama, Noriyoshi Masuoka. Journal of Diabetes Mellitus, 2015, 5, 81-89


 4.

Effect of Burdock Root and the Fermented Product on Alloxan-Induced Mouse Hyperglycemia

Wakana Doi, Yumi Asada, Ayaka Ohno, Yoshiko Okuda, Shota Masuda, Ayano Matsumoto,

Chihiro Mori, Takaya Agarie, Kohji Ishihara, Takayuki Murakami & Noriyoshi Masuoka Journal of

Food Research; Vol. 4, No. 4; 201


 5.

Tissue Complex of Adult Pancreatic Duct and Vascular Endothelial Cells Promotes In Vitro Differentiation into Insulin-Producing Cells. Jun Kanamune, Chongmun Kim, Yasuhiro Iwanaga, Jorge David Rivas-Carrillo, Shoichiro Sumi, Shinji Uemoto and Kazuyuki Yokokawa. J Stem Cell Res Dev 2015, 2: 005


 6.

Anti-diabetic effect of purple corn extract on C57BL/KsJ db/db mice. Bo Huang, Zhiqiang Wang, Jong Hyuk Park, Ok Hyun Ryu, Moon Ki Choi, Jae-Yong Lee, Young-Hee Kang, and Soon Sung Lim. Nutr Res Pract. 2015 Feb;9(1):22-29.


 7.

Xanthohumol Improves Diet-induced Obesity and Fatty Liver by Suppressing Sterol Regulatory Element-binding Protein (SREBP) Activation. Miyata S, Inoue J, Shimizu M, Sato R. J Biol Chem. 2015 Aug 14;290(33):20565-79.


 8.

Effect of Aspergillus awamori-Fermented Burdock Root on Mouse Diabetes Induced by

Alloxan—Prevention of Cell Apoptosis. Kazunori Takemoto, Wakana Doi, Ayumi Zukeran, Junji Inoue, Kohji Ishihara, Noriyoshi Masuoka. Food and Nutrition Sciences, Vol.5 No.16(2014), Article ID:49228,7 pages


 9.

Engineering of pseudoislets: effect on insulin secretion activity by cell number, cell population, and microchannel networks. Kojima N, Takeuchi S, Sakai Y. Transplant Proc. Vol.46(4), p1161-65, May 2014.


10.

Evaluation of 7-O-galloyl-d-sedoheptulose, isolated from Corni Fructus, in the adipose tissue of type 2 diabetic db/db mice. Park CH., Tanaka T., Yokozawa T. Fitoterapia, Vol.89, p131-142, Sep 2013.


11.

Periaortic adipose tissue-specific activation of the renin-angiotensin system contributes to atherosclerosis development in uninephrectomized apoE-/- mice. Kawahito H., Yamada H., Irie D., Kato T., Akakabe Y., Kishida S., Takata H., Wakana N., Ogata T., Ikeda K., Ueyama T., Matoba S., Mori Y., Matsubara H. American Journal of Physiology – Heart and Circulatory Physiology, Vol.305, p667-675, Sep 2013.


12.

Effect of vitamin E on alloxan-induced mouse diabetes. Kamimura W., Doi W., Takemoto K., Ishihara K., Wang D-H., Sugiyama H., Oda S., Masuoka N. Clinical Biochemistry, Vol.46(9), p795-798, Jun 2013.


13.

Evaluation of 7-O-galloyl-d-sedoheptulose, isolated from Corni Fructus, in the adipose tissue of type 2 diabetic db/db mice. C.H.Park, T.Tanaka, T.Yokozawa. Fitoterapia,  Vol.89, p131-42, Sep 2013.


14.

Therapeutic approach for type 1 diabetes mellitus using the novel immunomodulator FTY720 (fingolimod) in combination with once-daily injection of insulin glargine in non-obese diabetic mice. T.Tsuji, M.Inoue, Y.Yoshida, T.Fujita, Y.Kaino, T.Kohno. Journal of Diabetes Investigation, Vol.3(2), p132-137, Apr 2012.


15.

Effect of vitamin E on alloxan-induced mouse diabetes. Kamimura W, Doi W, Takemoto K, Ishihara K, Wang D-H, Sugiyama H, Oda S, Masuoka N. Clinical Biochemistry, Mar 2013.


16.

Intramedullary Cavity as an Implant Site for Bioartificial Pancreas: An In Vivo Study on Diabetic Canine. Y, Kai-Chiang., W, Chang-Chin., S, Shoichiro., K, Tzong-Fu., L, Sheng-Chuan., L, Feng-Huei. Transplantation, Vol. 90(6), p604-611, Sep 2010.


17.

The in vivo performance of bioartificial pancreas in bone marrow cavity: A case report of a spontaneous diabetic feline. K, C, Yang., C, C, Wu., S, C, Lin., S, Sumi., F, H, Lin. Biochemical and Biophysical Research Communications, Vol.393(3), p362-364, Mar 2010.


18.

In vitro reprogramming of adult hepatocytes into insulin-producing cells without viral vectors . H, Motoyama., S, Ogawa., A, Kubo., S, Miwa., J, Nakayama., Y, Tagawa., S, Miyagawa. Biochemical and Biophysical Research Communications, Vol.385(1),  p123-128, Jul 2009.


19.

Efficient differentiation of insulin-producing cells from skin-derived stem cells. Guo,W.,Miao,C.,Liu,S.,Qiu,Z.,Li,J., and Duan, E. Cell Proliferation, Vol.42(1), p49-62, 2009.


20.

Enrichment of Putative Pancreatic Progenitor Cells From Mice by Sorting for Prominin1(CD133)and PDGFRb. Yuichi Hori,Miki Fukomoto,Yoshikazu Kuroda. Stem Cells;0:2008-0192v1,2008


21.

Possibility of insulin-producing cells derived from mouse embryonic stem cells for diabetes treatment. T, Ibii., H, Shimada., S, Miura., E, Fukuma., H, Sato., H, Iwata. Journal of Bioscience and Bioengineering,Vol.103(2), p140-146, Feb 2007.


22.

The dual function of hepatic SOCS3 in insulin resistance in vivo. Torisu, T., Sato, N., Yoshiga, D., Kobayashi, T., Yoshioka, T., Mori, H., Iida, M. and Yoshimura, A. Genes to Cells, 12, p143-154, 2007.


23.

Prolonged remission of diabetes by regeneration of bold italic beta cells in diabetic mice treated with recombinant adenoviral vector expressing glucagon-like peptide-1. Liu, M.J., Shin, S., Li, N., Shigehara, T., Lee, Y.S., Yoon, J.W., and Jun H.S. Molecular Therapy 15: p86-93, 2007.


24.

Possibility of insulin-producing cells derived from mouse embryonic stem cells for diabetes treatment. Ibii, T., Shimada, H, Miura, S., Fukuma, E.,Sato, H.,and Iwata,H. J Bioscience Bioengineering 103: p140-146, 2007.


25.

A human b-cell line for transplantation therapy to control type 1 diabetes. Narushima, M., Kobayashi, N., Okitsu, T., Tanaka, Y., Li, S.A., Chen, Y., Miki, A., Tanaka, K., Nakaji, S., Takei, K., Gutierrez, A.S., Rivas-Carrillo, J.D., Navarro-Alvarez, N., Jun, H.S., Westerman, K.A., Noguchi, H., Lakey, J.R.T.,, Leboulch, P., Tanaka, N., and Yoon, J.W. Nature Biotechnology, Vol. 23(10), p1274-1282, 2005.



产品列表

产品编号 产品名称 产品规格 产品等级 备注
635-07239 (AKRCP-031)LBIS® Mouse C-peptide ELISA kit (U-type)
LBIS®小鼠 C-肽 ELISA试剂盒(U型) 
96 tests

免责声明

1. 本公司密切关注本网站发布的内容,但不保证发布内容的准确性、完整性、可靠性和最新性等。

2. 本公司不保证使用本网站期间不会出现故障或计算机病毒污染的风险。

3. 无论何种原因,使用本网站时给用户或第三方造成的任何不利或损害,本公司概不负责。此外,对于用户与其他用户或第三方之间因本网站发生的任何交易、通讯

3. 纠纷,本公司概不负责。

4. 本网站可提供的所有产品和服务均不得用于人体或动物的临床诊断或治疗,仅可用于科研等非医疗目的。如任何用户将本网站提供的产品和服务用临床诊断或治

4. 疗,以及他特定的用途或行为,本公司概不保证其安全性和有效性,并且不负任何相关的法律责任。

LBIS® 小鼠胰岛素 ELISA 试剂盒(T 型) LBIS® Insulin-Mouse-T

产品中心 > 生命科学 > 疾病研究 > 代谢&糖尿病&肥胖症

LBIS® 小鼠胰岛素 ELISA 试剂盒(T 型)
LBIS® Insulin-Mouse-T

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

LBIS® Insulin-Mouse-TLBIS® 小鼠胰岛素 ELISA 试剂盒(T 型)                              LBIS® Insulin-Mouse-T

LBIS® 小鼠胰岛素 ELISA 试剂盒(T 型)

LBIS® 小鼠胰岛素 ELISA 试剂盒(T 型)                              LBIS® Insulin-Mouse-T

  

胰岛素是由胰脏内的胰岛β细胞分泌,分子量约 5800,等电点在 5.4 左右的一种蛋白质激素。

  A6-A11、A7-B7、A20-B-19 之间形成二硫键,在酸性溶液或者不含 Zn 离子的中性水溶液中形成二聚体,在含锌离子的中性溶液中,则形成含2个 Zn 离子的六聚体。

肝脏、肌肉、脂肪组织是主要的靶组织,分别有以下的作用。

肝脏:促进糖原、蛋白质、脂肪酸合成、促进糖类的摄取和利用、抑制糖异生。

肌肉:糖类、氨基酸、K细胞膜通透性增大、促进糖原、蛋白质的合成、抑制蛋白质分解。

脂肪组织:葡萄糖细胞膜通透性增大、促进脂肪酸的合成。

胰岛素是细胞内的合成单链胰岛素原通过二硫键结合一起形成的。在酶分解作用下被激活,C肽和胰岛素分离。

◆特点

● 短时间测定(总的反应时间:3小时)

● 微量样品(标准操作:10 μL)可测

● 使用对环境无害的防腐剂

● 全部试剂均为液体,可直接使用

● 精密的测定精度和高再现性

● 操作简便,不需要特别的预处理

● 有效期限为 12 个月

◆构成

组成部分

状态

容量

(A) 抗体固相化 96孔板

洗净后使用

96 wells(8×12)/1 块

(B) 胰岛素标准溶液(小鼠)(200 ng/mL)

稀释后使用

25 μL/1 瓶

(C) 缓冲液

即用

60 mL/1 瓶

(D) 生物素结合抗胰岛素抗体

稀释后使用

10 μL/1 瓶

(E) 过氧化物・抗生物素蛋白结合物

稀释后使用

20 μL/1 瓶

(F) 显色液(TMB)

即用

12 mL/1 瓶

(H) 反应终止液(1M   H2SO4)※小心轻放

即用

12 mL/1 瓶

( I ) 浓缩洗净液(10×)

稀释后使用

100 mL/1 瓶

封板膜

3 张

使用说明书

1 份

◆样品信息

小鼠的血清、血浆、培养液

10 μL/well(标准操作)

※血浆采血建议使用肝素处理血液

 

◆测量范围

0.156~10 ng/mL(标准曲线范围)

◆Validation data

精度测试(组内变异)

样品

A

B

C

D

mean

0.882

1.15

3.67

5.25

SD

0.0245

0.0213

0.0649

0.0792

CV(%)

2.78

1.87

1.77

1.51

单位:ng/mL n=10

 

重复性测试(组间变异)

测量日/样品

E

F

G

第0天

5.253

1.224

0.513

第1天

5.322

1.312

0.523

第2天

5.365

1.269

0.512

第3天

5.362

1.281

0.535

mean

5.326

1.272

0.521

SD

0.0520

0.0366

0.0109

CV(%)

3.31

3.76

4.65

单位:ng/mL n=3

 

加标回收测试

 

样品H

添加量

实测值

回收量

回收率(%)

0

1.350

0.25

1.593

0.243

97.2

0.50

1.841

0.491

98.2

0.75

2.065

0.715

95.3

1.00

2.299

0.949

94.9

单位:ng/mL n=3

 

样品I

添加量

实测值

回收量

回收率(%)

0

1.941

0.50

2.496

0.505

101

0.75

2.728

0.737

98.3

1.00

2.955

0.964

96.4

1.50

3.431

1.440

96.0

单位:ng/mL n=3

 

稀释直线性测试

 

用稀释缓冲液分3次连续稀释3个血清样品的测量结果,直线回归方程的 R2在 0.993~0.999 之间。

参考文献



 1.

Endoplasmic Reticulum Stress in Mice Increases Hepatic Expression of Genes Carrying a Premature Termination Codon via a Nutritional Status-Independent GRP78-Dependent Mechanism.Harada N, Okuyama M, Yoshikatsu A, Yamamoto H, Ishiwata S, Hamada C, Hirose T, Shono M, Kuroda M, Tsutsumi R, Takeo J, Taketani Y, Nakaya Y, Sakaue H.J Cell Biochem. 2017 Nov;118(11):3810-3824.


 2.

Effects of β-Glucan Content and Pearling of Barley in Diet-Induced Obese MiceSeiichiro Aoe, Yasunori Ichinose, Noriko Kohyama, Kozo Komae, Asuka Takahashi, Toji Yoshioka, and Takashi Yanagisawa.Posted online on 27 Sep 2017. https://doi.org/10.1094/CCHEM-04-17-0083-R

 3.

10-Hydroxy-2-decenoic acid, a natural product, improves hyperglycemia and insulin resistance in obese/diabetic KK-Ay mice, but does not prevent obesity Risa WATADANI, Jun KOTOH, Daiki SASAKI, Azusa SOMEYA, Kozo MATSUMOTO, Akihiko MAEDA Journal of Veterinary Medical Science, Vol. 79 (2017) No. 9 Sept, p.1596-1602


 4.

S-Equol Activates cAMP Signaling at the Plasma Membrane of INS-1 Pancreatic β-Cells and Protects against Streptozotocin-Induced Hyperglycemia by Increasing β-Cell Function in Male Mice. Horiuchi H, Usami A, Shirai R, Harada N, Ikushiro S, Sakaki T, Nakano Y, Inui H, Yamaji R. J Nutr. 2017 Sep;147(9):1631-1639.


 5.

Pathological and gene expression analysis of a polygenic diabetes model, NONcNZO10/LtJ mice. Hirata T, Yoshitomi T, Inoue M, Iigo Y, Matsumoto K, Kubota K, Shinagawa A. Gene. 2017 Sep 20;629:52-58.


 6.

Suppression of GRK2 expression reduces endothelial dysfunction by restoring glucose homeostasis. Taguchi K, Hida M, Hasegawa M, Narimatsu H, Matsumoto T, Kobayashi T. Sci Rep. 2017 Aug 16;7(1):8436.


 7.

Gender difference in NASH susceptibility: Roles of hepatocyte Ikkβ and Sult1e1. Matsushita N, Hassanein MT, Martinez-Clemente M, Lazaro R, French SW, Xie W, Lai K, Karin M, Tsukamoto H. PLoS One. 2017 Aug 10;12(8):e0181052.


 8.

Intake of mulberry 1-deoxynojirimycin prevents colorectal cancer in mice. E S, Yamamoto K, Sakamoto Y, Mizowaki Y, Iwagaki Y, Kimura T, Nakagawa K, Miyazawa T, Tsuduki T. J Clin Biochem Nutr. 2017 Jul;61(1):47-52.


 9.

Sake lees extract improves hepatic lipid accumulation in high fat diet-fed mice. Kubo H, Hoshi M, Matsumoto T, Irie M, Oura S, Tsutsumi H, Hata Y, Yamamoto Y, Saito K Lipids Health Dis. 2017 Jun 3;16(1):106.


10.

Moringa oleifera from Cambodia Ameliorates Oxidative Stress, Hyperglycemia, and Kidney Dysfunction in Type 2 Diabetic Mice. Tang Y, Choi EJ, Han WC, Oh M, Kim J, Hwang JY, Park PJ, Moon SH, Kim YS, Kim EK. J Med Food. 2017 May;20(5):502-510.


11.

4μ8C Inhibits Insulin Secretion Independent of IRE1α RNase Activity. Sato H, Shiba Y, Tsuchiya Y, Saito M, Kohno K. Cell Struct Funct. 2017 May 3;42(1):61-70


12.

Inhibition of Gastric Inhibitory Polypeptide Receptor Signaling in Adipose Tissue Reduces Insulin Resistance and Hepatic Steatosis in High-Fat Diet-Fed Mice. Joo E, Harada N, Yamane S, Fukushima T, Taura D, Iwasaki K, Sankoda A, Shibue K, Harada T, Suzuki K, Hamasaki A, Inagaki N. Diabetes. 2017 Apr;66(4):868-879.


13.

Prevention and treatment effect of evogliptin on hepatic steatosis in high-fat-fed animal models. Kim MK, Chae YN, Ahn GJ, Shin CY, Choi SH, Yang EK, Sohn YS, Son MH Arch Pharm Res. 2017 Feb;40(2):268-281.


14.

Royal jelly improves hyperglycemia in obese/diabetic KK-Ay mice. Mei YOSHIDA, Kaori HAYASHI,  Risa WATADANI,  Yoshiyasu OKANO, Keiya TANIMURA, Jun KOTOH, Daiki SASAKI,  Kozo MATSUMOTO,  Akihiko MAEDA Journal of Veterinary Medical Science, Vol. 79 (2017)  No. 2 February p. 299-307


15.

PDK1-FoxO1 pathway in AgRP neurons of arcuate nucleus promotes bone formation via GHRH-GH-IGF1 axis. Sasanuma H, Nakata M, Parmila K, Nakae J, Yada T. Mol Metab. 2017 Feb 17;6(5):428-439.


16.

Soy Protein Isolate Suppresses Lipodystrophy-induced Hepatic Lipid Accumulation in Model Mice. Nagao K, Matsumoto A, Kai S, Kayashima T, Yanagita T. J Oleo Sci. 2017 Feb 1;66(2):161-169.


17.

A high-fat diet temporarily renders Sod1-deficient mice resistant to an oxidative insult.

Ito J, Ishii N, Akihara R, Lee J, Kurahashi T, Homma T, Kawasaki R, Fujii J J Nutr Biochem. 2017 Feb;40:44-52.


18.

Macrophage ubiquitin-specific protease 2 modifies insulin sensitivity in obese mice. Saito N, Kimura S, Miyamoto T, Fukushima S, Amagasa M, Shimamoto Y, Nishioka C, Okamoto S, Toda C, Washio K, Asano A, Miyoshi I, Takahashi E, Kitamura H. Biochem Biophys Rep. 2017 Jan 26;9:322-329.


19.

Dietary Mung Bean Protein Reduces Hepatic Steatosis, Fibrosis, and Inflammation in Male Mice with Diet-Induced, Nonalcoholic Fatty Liver Disease. Watanabe H, Inaba Y, Kimura K, Asahara SI, Kido Y, Matsumoto M, Motoyama T, Tachibana N, Kaneko S, Kohno M, Inoue H. J Nutr. 2017 Jan;147(1):52-60.


20.

BCL11B gene heterozygosity causes weight loss accompanied by increased energy consumption, but not defective adipogenesis, in mice Jun Inoue, Yusuke Ihara, Daisuke Tsukamoto, Keisuke Yasumoto, Tsutomu Hashidume, Kenya Kamimura, Shigeki Hirano, Makoto Shimizu, Ryo Kominami & Ryuichiro Sato Bioscience, Biotechnology, and Biochemistry, Vol.81, 2017,Issue 5, p922-930


21.

Macrophage ubiquitin-specific protease 2 modifies insulin sensitivity in obese mice. Natsuko Saitoa,Shunsuke Kimurac,Tomomi Miyamotod,Sanae Fukushimae,Misato Amagasaa,Yoshinori Shimamotob, Chieko Nishiokae,Shiki Okamotof,Chitoku Todag,Kohei Washioa,Atsushi Asanoh,Ichiro Miyoshid,Eiki Takahashie,Hiroshi Kitamura Biochemistry and Biophysics ReportsVolume 9, March 2017, Pages 322-329


22.

Agmatine ameliorates type 2 diabetes induced-Alzheimer’s disease-like alterations in high-fat diet-fed mice via reactivation of blunted insulin signalling. Kang S, Kim CH, Jung H, Kim E, Song HT, Lee JE. Neuropharmacology. 2017 Feb;113(Pt A):467-479


23.

Dietary nitrite reverses features of postmenopausal metabolic syndrome induced by high fat diet and ovariectomy in mice. Ohtake K, Ehara N, Chiba H, Nakano G, Sonoda K, Ito J, Uchida H, Kobayashi J. Am J Physiol Endocrinol Metab. 2017 Feb 14


24.

A high-fat diet temporarily renders Sod1-deficient mice resistant to an oxidative insult. Ito J, Ishii N, Akihara R, Lee J, Kurahashi T, Homma T, Kawasaki R, Fujii J. J Nutr Biochem. 2017 Feb;40:44-52.


25.

Inhibition of Gastric Inhibitory Polypeptide Receptor Signaling in Adipose Tissue Reduces Insulin Resistance and Hepatic Steatosis in High Fat Diet-Fed Mice. Joo E, Harada N, Yamane S, Fukushima T, Taura D, Iwasaki K, Sankoda A, Shibue K, Harada T, Suzuki K, Hamasaki A, Inagaki N. Diabetes. 2017 Jan 17.


26.

BCL11B gene heterozygosity causes weight loss accompanied by increased energy consumption, but not defective adipogenesis, in mice. Inoue J, Ihara Y, Tsukamoto D, Yasumoto K, Hashidume T, Kamimura K, Hirano S, Shimizu M, Kominami R, Sato R. Biosci Biotechnol Biochem. 2017 Jan 9:1-9.


27.

Attenuated secretion of glucose-dependent insulinotropic polypeptide (GIP) does not alleviate hyperphagic obesity and insulin resistance in ob/ob mice. Satoko Shimazu-Kuwahara,Norio Harada,Shunsuke Yamane,Erina Joo,Akiko Sankoda,Timothy J. Kieffer,Nobuya Inagaki. Molecular Metabolism,Available online 19 January 2017


28.

Dietary Mung Bean Protein Reduces Hepatic Steatosis, Fibrosis, and Inflammation in Male Mice with Diet-Induced, Nonalcoholic Fatty Liver Disease. Watanabe H, Inaba Y, Kimura K, Asahara SI, Kido Y, Matsumoto M, Motoyama T, Tachibana N, Kaneko S, Kohno M, Inoue H. J Nutr. 2017 Jan;147(1):52-60.


29.

Germinated Pigmented Rice (Oryza Sativa L. cv. Superhongmi) Improves Glucose and Bone Metabolisms in Ovariectomized Rats. Chung SI, Ryu SN, Kang MY. Nutrients. 2016 Oct 21;8(10).


30.

Angiopoietin-like peptide 4 regulates insulin secretion and islet morphology. Kim HK, Kwon O, Park KH, Lee KJ, Youn BS, Kim SW, Kim MS. Biochem Biophys Res Commun. 2017 Feb 7


31.

Ubc13 haploinsufficiency protects against age-related insulin resistance and high-fat diet-induced obesity. Joo E, Fukushima T, Harada N, Reed JC, Matsuzawa SI, Inagaki N. Sci Rep. 2016 Oct 31;6:35983.


32.

Procyanidin Promotes Translocation of Glucose Transporter 4 in Muscle of Mice through Activation of Insulin and AMPK Signaling Pathways. Yamashita Y, Wang L, Nanba F, Ito C, Toda T, Ashida H. PLoS One. 2016 Sep 6;11(9):e0161704


33.

Oxytocin Protects against Stress-Induced Cell Death in Murine Pancreatic β-Cells. Watanabe S, Wei FY, Matsunaga T, Matsunaga N, Kaitsuka T, Tomizawa K. Sci Rep. 2016 May 4;6:25185.


34.

Loss of circadian rhythm of circulating insulin concentration induced by high-fat diet intake is associated with disrupted rhythmic expression of circadian clock genes in the liver. Honma K, Hikosaka M, Mochizuki K, Goda T. Metabolism. 2016 Apr;65(4):482-91


35.

Sodium alginate prevents progression of non-alcoholic steatohepatitis and liver carcinogenesis in obese and diabetic mice. Miyazaki T, Shirakami Y, Kubota M, Ideta T, Kochi T, Sakai H, Tanaka T, Moriwaki H, Shimizu M. Oncotarget. 2016 Mar 1;7(9):10448-58.


36.

Obesity-induced DNA released from adipocytes stimulates chronic adipose tissue inflammation and insulin resistance. Nishimoto S, Fukuda D, Higashikuni Y, Tanaka K, Hirata Y, Murata C, Kim-Kaneyama JR, Sato F, Bando M, Yagi S, Soeki T, Hayashi T, Imoto I, Sakaue H, Shimabukuro M, Sata M. Sci Adv. 2016 Mar 25;2(3):e1501332


37.

Fatty Liver and Insulin Resistance in the Liver-Specific Knockout Mice of Mitogen Inducible Gene-6. Park BK, Lee EA, Kim HY, Lee JC, Kim KS, Jeong WH, Kim KY, Ku BJ, Rhee SD. J Diabetes Res. 2016;2016:1632061


38.

Reactive sulfur species regulate tRNA methylthiolation and contribute to insulin secretion. Takahashi N, Wei FY, Watanabe S, Hirayama M, Ohuchi Y, Fujimura A, Kaitsuka T, Ishii I, Sawa T, Nakayama H, Akaike T, Tomizawa K.


39.

Effects of caloric restriction on O-GlcNAcylation, Ca(2+) signaling, and learning impairment in the hippocampus of ob/ob mice. Jeon BT, Heo RW, Jeong EA, Yi CO, Lee JY, Kim KE, Kim H, Roh GS. Neurobiol Aging. 2016 Aug;44:127-37.


40.

Chronic Repression of mTOR Complex 2 Induces Changes in the Gut Microbiota of Diet-induced Obese Mice. Jung MJ, Lee J, Shin NR, Kim MS, Hyun DW, Yun JH, Kim PS, Whon TW, Bae JW. Sci Rep. 2016 Jul 29;6:30887.


41.

Single ingestion of soy β-conglycinin induces increased postprandial circulating FGF21 levels exerting beneficial health effects. Hashidume T, Kato A, Tanaka T, Miyoshi S, Itoh N, Nakata R, Inoue H, Oikawa A, Nakai Y, Shimizu M, Inoue J, Sato R. Sci Rep. 2016 Jun 17;6:28183.


42.

Paraventricular NUCB2/Nesfatin-1 Supports Oxytocin and Vasopressin Neurons to Control Feeding Behavior and Fluid Balance in Male Mice. Nakata M, Gantulga D, Santoso P, Zhang B, Masuda C, Mori M, Okada T, Yada T. Endocrinology. 2016 Jun;157(6):2322-32.


43.

Oxytocin Protects against Stress-Induced Cell Death in Murine Pancreatic β-Cells. Watanabe S, Wei FY, Matsunaga T, Matsunaga N, Kaitsuka T, Tomizawa K. Sci Rep. 2016 May 4;6:25185.


44.

Loss of circadian rhythm of circulating insulin concentration induced by high-fat diet intake is associated with disrupted rhythmic expression of circadian clock genes in the liver. Honma K, Hikosaka M, Mochizuki K, Goda T. Metabolism. 2016 Apr;65(4):482-91.


45.

Protective effect of vitamin E against alloxan-induced mouse hyperglycemia. Takemoto K, Doi W, Masuoka N. Biochim Biophys Acta. 2016 Apr;1862(4):647-50.


46.

Castration influences intestinal microflora and induces abdominal obesity in high-fat diet-fed mice. Harada N, Hanaoka R, Horiuchi H, Kitakaze T, Mitani T, Inui H, Yamaji R. Sci Rep. 2016 Mar 10;6:23001.


47.

Pharmacological Inhibition of Monoacylglycerol O-Acyltransferase 2 Improves Hyperlipidemia, Obesity, and Diabetes by Change in Intestinal Fat Utilization. Take K, Mochida T, Maki T, Satomi Y, Hirayama M, Nakakariya M, Amano N, Adachi R, Sato K, Kitazaki T, Takekawa S. PLoS One. 2016 Mar 3;11(3):e0150976.


48.

GADD34-deficient mice develop obesity, nonalcoholic fatty liver disease, hepatic carcinoma and insulin resistance Naomi Nishio and Ken-ichi Isobe Sci Rep. 2015; 5: 13519.


49.

Patterns of Brain Activation and Meal Reduction Induced by Abdominal Surgery in Mice and Modulation by Rikkunshito Lixin Wang, Sachiko Mogami, Seiichi Yakabi, Hiroshi Karasawa, Chihiro Yamada, Koji Yakabi, Tomohisa Hattori, and Yvette Taché PLoS One. 2015; 10(9): e0139325.


50.

Hot water extracts of edible Chrysanthemum morifolium Ramat. exert antidiabetic effects in obese diabetic KK-Ay mice Yamamoto J, Tadaishi M, Yamane T, Oishi Y, Shimizu M, Kobayashi-Hattoria K. Bioscience, Biotechnology, and Biochemistry, Vol.79(7), 2015.


51.

Dietary obacunone supplementation stimulates muscle hypertrophy, and suppresses hyperglycemia and obesity through the TGR5 and PPARγ pathway. Horiba T, Katsukawa M, Mita M, Sato R. Biochem Biophys Res Commun. Vol.463(4), p846-52, Aug. 2015.


52.

Hepatic STAMP2 alleviates high fat diet-induced hepatic steatosis and insulin resistance. Kim HY, Park SY, Lee MH, Rho JH, Oh YJ, Jung HU, Yoo SH, Jeong NY, Lee HJ, Suh S, Seo SY, Cheong J, Jeong JS, Yoo YH. J Hepatol. Vol.63(2), p477-85, Aug 2015.


53.

Optogenetic control of insulin secretion by pancreatic β-cells in vitro and in vivo. Kushibiki T, Okawa S, Hirasawa T, Ishihara M. Gene Ther. Vol.22(7), p553-9, Jul 2015.


54.

Preventive effects of astaxanthin on diethylnitrosamine-induced liver tumorigenesis in C57/BL/KsJ-db/db obese mice. Ohno T, Shimizu M, Shirakami Y, Miyazaki T, Ideta T, Kochi T, Kubota M, Sakai H, Tanaka T, Moriwaki H. Hepatol Res. Jul 2015


55.

Effects of liquid konjac on parameters related to obesity in diet-induced obese mice. Aoe S, Kudo H, Sakurai S. Biosci Biotechnol Biochem. Vol.79(7), p1141-6, Jul 2015.


56.

Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance via glucagon-like peptide 1 in diet-induced obesity. Hwang I, Park YJ, Kim YR, Kim YN, Ka S, Lee HY, Seong JK, Seok YJ, Kim JB. FASEB J. Vol.29(6), p2397-411, Jun 2015.


57.

PRMT4 is involved in insulin secretion via the methylation of histone H3 in pancreatic β cells. Kim JK, Lim Y, Lee JO, Lee YS, Won NH, Kim H, Kim HS. J Mol Endocrinol.Vol.54(3), p315-24, Jun 2015.


58.

Hepatic NPC1L1 overexpression ameliorates glucose metabolism in diabetic mice via suppression of gluconeogenesis. Kurano M, Hara M, Satoh H, Tsukamoto K. Metabolism. Vol.64(5), p588-96, May 2015.


59.

Chronic high intake of quercetin reduces oxidative stress and induces expression of the antioxidant enzymes in the liver and visceral adipose tissues in mice. Kobori M, Takahashi Y, Akimoto Y, Sakurai M, Matsunaga I, Nishimuro H, Ippoushi K, Oike H, Ohnishi-Kameyama M. Journal of Functional Foods, Vol.15, p551–560, May 2015.


60.

Effects of quercetin derivatives from mulberry leaves: Improved gene expression related hepatic lipid and glucose metabolism in short-term high-fat fed mice. Sun X, Yamasaki M, Katsube T, Shiwaku K. Nutr Res Pract. Vol.9(2), p137-43, Apr 2015.


61.

Insulin Release from the Beta Cells in Acatalasemic Mice Is Highly Susceptible to Alloxan-Induced Oxidative Stress. Kazunori Takemoto, Wakana Doi, Ken Kataoka, Kohji Ishihara, Da-Hong Wang., Hitoshi Sugiyama, Noriyoshi Masuoka. JDM, Vol.5 No.2, May 2015


62.

Titanium dioxide nanoparticles increase plasma glucose via reactive oxygen species-induced insulin resistance in mice. Hu H, Guo Q, Wang C, Ma X, He H, Oh Y, Feng Y, Wu Q, Gu N. J Appl Toxicol. Mar 2015 .


63.

Compensatory hyperinsulinemia in high-fat diet-induced obese mice is associated with enhanced insulin translation in islets. Kanno A, Asahara S, Masuda K, Matsuda T, Kimura-Koyanagi M, Seino S, Ogawa W, Kido Y.  Biochem Biophys Res Commun. Vol.13;458(3), p681-6. Mar 2015.


64.

Optogenetic control of insulin secretion by pancreatic β-cells in vitro and in vivo. Kushibiki T, Okawa S, Hirasawa T, Ishihara M. Gene Ther. Mar 2015.


65.

Compensatory hyperinsulinemia in high-fat diet-induced obese mice is associated with enhanced insulin translation in islets. Kanno A, Asahara S, Masuda K, Matsuda T, Kimura-Koyanagi M, Seino S, Ogawa W, Kido Y. Biochem Biophys Res Commun. Vol.458(3), p681-6, Mar 2015.


66.

Essential role of mitochondrial Ca2+ uniporter in the generation of mitochondrial pH gradient and metabolism-secretion coupling in insulin-releasing cells. Quan X, Nguyen TT, Choi SK, Xu S, Das R, Cha SK, Kim N, Han J, Wiederkehr A, Wollheim CB, Park KS. J Biol Chem. Vol.290(7), p4086-96, Feb 2015.


67.

Endogenous Interleukin 18 Suppresses Hyperglycemia and Hyperinsulinemia during the Acute Phase of Endotoxemia in Mice. Yamashita H, Aoyama-Ishikawa M, Takahara M, Yamauchi C, Inoue T, Miyoshi M, Maeshige N, Usami M, Nakao A, Kotani J. Surg Infect (Larchmt). 2015 Feb;16(1):90-6.


68.

 Hot water extracts of edible Chrysanthemum morifolium Ramat. exert antidiabetic effects in obese diabetic KK-Ay mice. Junpei Yamamoto, Miki Tadaishi, Takumi Yamane, Yuichi Oishi, Makoto Shimizu & Kazuo Kobayashi-Hattoria. Bioscience, Biotechnology, and Biochemistry, Published online: 10 Feb 2015


69.

Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance via glucagon-like peptide 1 in diet-induced obesity. Hwang I, Park YJ, Kim YR1, Kim YN, Ka S, Lee HY, Seong JK, Seok YJ, Kim JB. FASEB J. Feb 2015.


70.

Titanium dioxide nanoparticles increase plasma glucose via reactive oxygen species-induced insulin resistance in mice. Hu H, Guo Q, Wang C, Ma X, He H, Oh Y, Feng Y, Wu Q, Gu N. J Appl Toxicol. Mar 2015.


71.

Ashitaba (Angelica keiskei) extract prevents adiposity in high-fat diet-fed C57BL/6 mice. Zhang T, Yamashita Y, Yasuda M, Yamamoto N, Ashida H. Food Funct. Vol.6(1), p134-144, Jan 2015.


72.

Dietary nitrite supplementation improves insulin resistance in type 2 diabetic KKAy mice Ohtake K, Nakano G, Ehara N, Sonoda K, Ito J, Uchida H, Kobayashi J. Nitric Oxide, Vol.44, p31–38, Jan 2015.


73.

Salicornia herbacea prevents weight gain and hepatic lipid accumulation in obese ICR mice fed a high-fat diet. Pichiah PT, Cha YS. J Sci Food Agric. Dec 2014.


74.

Salacia reticulata has therapeutic effects on obesity. Shimada T, Nakayama Y, Harasawa Y, Matsui H, Kobayashi H, Sai Y, Miyamoto K, Tomatsu S, Aburada M. J Nat Med. Vol.68(4), p668-676, Oct 2014.Salicornia herbacea prevents weight gain and hepatic lipid accumulation in obese ICR mice fed a high-fat diet. Pichiah PT1, Cha YS. J Sci Food Agric. Dec 2014.


75.

Ghrelin administered spinally increases the blood glucose level in mice. Sim Y-B., Park S-H., Kim S-S., Kim C-H., Kim S-J., Lim S-M., Jung J-S., Suh H-W. Peptides, Vol.54, p162-165, Apr 2014.

76.

Chronic exposure to valproic acid promotes insulin release, reduces KATP channel current and does not affect Ca2+ signaling in mouse islets. Manaka K., Nakata M., Shimomura K., Rita RS., Maejima Y., Yoshida M., Dezaki K., Kakei M., Yada T. The Journal of Physiological Sciences, Vol.64(1), p77-83, Jan 2014.


77.

Impaired Lipid and Glucose Homeostasis in Hexabromocyclododecane-Exposed Mice Fed a High-Fat Diet. Yanagisawa R., Koike E., Win-Shwe TT., Yamamoto M. and Takano H. ENVIRONMENTAL HEALTH PERSPECTIVES, Jan 2014.


78.

Lipid-Lowering Effects of Pediococcus acidilactici M76 Isolated from Korean Traditional Makgeolli in High Fat Diet-Induced Obese Mice. Moon Y-J., Baik S-H. and Cha Y-S. Nutrients, Vol.6(3), p1016-1028, 2014.


79.

Azilsartan, an angiotensin II type 1 receptor blocker, restores endothelial function by reducing vascular inflammation and by increasing the phosphorylation ratio Ser1177/Thr497 of endothelial nitric oxide synthase in diabetic mice. Matsumoto S., Shimabukuro M., Fukuda D., Soeki T., Yamakawa K., Masuzaki H. and Sata M. Cardiovascular Diabetology, 13:30, 2014.


80.

Intake of mulberry 1-deoxynojirimycin prevents diet-induced obesity through increases in adiponectin in mice. T.Tsuduki, I.Kikuchi, T.Kimura, K.Nakagawa, T.Miyazawa. Food Chemistry, Vol.139(1-4), p16-23, Aug 2013.


81.

Chronic treatment with novel GPR40 agonists improve whole-body glucose metabolism based on the glucose-dependent insulin secretion. H.Tanaka, S.Yoshida, H.Oshima, H.Minoura, K.Negoro, T.Yamazaki, S.Sakuda, F.Iwasaki, T.Matsui and M. Shibasaki. JPET, Jul 2013.


82.

Contribution of insulin signaling to the regulation of pancreatic beta-cell mass during the catch-up growth period in a low birth weight mouse model. Y.Yoshida, M.Fuchita, M.Kimura-Koyanagi, A.Kanno, T.Matsuda, S.Asahara, N.Hashimoto, T.Isagawa, W.Ogawa, H.Aburatani, T.Noda, S.Seino, M.Kasuga, Y.Kido. Diabetology International, Jul 2013.


83.

Differential contribution of insulin and amino acids to the mTORC1-autophagy pathway in the liver and muscle. T.Naito, A.Kuma and N.Mizushima. The Journal of Biological Chemistry, Jun 2013.


84.

Apelin Inhibits Diet-Induced Obesity by Enhancing Lymphatic and Blood Vessel Integrity. M.Sawane, K.Kajiya, H.Kidoya, M.Takagi, F.Muramatsu and N.Takakura. Diabetes, Vol.62(6), p1970-1980, Jun 2013.


85.

Ras-related C3 botulinum toxin substrate 1 (RAC1) regulates glucose-stimulated insulin secretion via modulation of F-actin. S.Asahara, Y.Shibutani, K.Teruyama, H.Y.Inoue, Y.Kawada, H.Etoh, T.Matsuda, M.Kimura-Koyanagi, N.Hashimoto, M.Sakahara, W.Fujimoto, H.Takahashi, S.Ueda, T.Hosooka, T.Satoh, H.Inoue, M.Matsumoto, A.Aiba, M.Kasuga, Y.Kido. Diabetologia, Vol.56(5), p1088-1097, May 2013.


86.

Effects of hydrophilic statins on renal tubular lipid accumulation in diet-induced obese mice. K.Gotoh, T.Masaki, S.Chiba, H.Ando, K.Fujiwara, T.Shimasaki, Y.Tawara, I.Toyooka, K.Shiraishi, K.Mitsutomi, M.Anai, E.Itateyama, J.Hiraoka, K.Aoki, N.Fukunaga, T.Nawata, T.Kakuma. Obesity Research & Clinical Practice, May 2013.


87.

Amyloid-β Induces Hepatic Insulin Resistance In Vivo via JAK2. Y.Zhang, B.Zhou, B.Deng, F.Zhang, J.Wu, Y.Wang, Y.Le and Q.Zhai. Diabetes, Vol.62(4), p1159-1166, Apr 2013.


88.

Histidine augments the suppression of hepatic glucose production by central insulin action

Kimura K, Nakamura Y, Inaba Y, Matsumoto M, Kido Y, Asahara S, Matsuda T, Watanabe H, Maeda A, Inagaki F, Mukai C, Takeda K, Akira S, Ota T, Nakabayashi H, Kaneko S, Kasuga M and Inoue H.

Diabetes, Vol.62(4), p1003-1004, Apr 2013


89.

Improved transplantation outcome through delivery of DNA encoding secretion signal peptide-linked glucagon-like peptide-1 into mouse islets

Chae H Y, Lee M, Hwang H J, Kim H A, Kang J G, Kim C S, Lee S J, Ihm S-H.

Transplant International, Vol.26(4), p443-452, Apr 2013.


90.

Histidine augments the suppression of hepatic glucose production by central insulin action

K.Kimura, Y.Nakamura, Y.Inaba, M.Matsumoto, Y.Kido, S.Asahara, T.Matsuda, H.Watanabe, A.Maeda, F.Inagaki, C.Mukai, K.Takeda, S.Akira, T.Ota, H.Nakabayashi, S.Kaneko, M.Kasuga and H.Inoue. Diabetes, Mar 2013.


91.

Wogonin ameliorates hyperglycemia and dyslipidemia via PPARα activation in db/db mice without adverse side effects. Bak E-J, Kim J-H, Lee D-E, Choi Y-H, Kim J M, Woo G-H, Cha J-H, Yoo Y-J. Clinical Nutrition, Available online 26, Mar 2013.


92.

Extracellular Signal-Regulated Kinase in the Ventromedial Hypothalamus Mediates Leptin-Induced Glucose Uptake in Red-Type Skeletal Muscle. Toda C, Shiuchi T, Kageyama H, Okamoto S, Coutinho E A, Sato T, Okamatsu-Ogura Y, Yokota S, Takagi K, Tang L, Saito K, Shioda S and Minokoshi Y. Diabetes Mar 2013.


93.

Effect of vitamin E on alloxan-induced mouse diabetes. Kamimura W, Doi W, Takemoto K, Ishihara K, Wang D-H, Sugiyama H, Oda S, Masuoka N. Clinical Biochemistry, Mar 2013.


94.

Ablation of Rnf213 retards progression of diabetes in the Akita mouse. Kobayashi H, Yamazaki S, Takashima S, Liu W, Okuda H, Yan J, Fujii Y, Hitomi T, Harada K H, Habu T, Koizumi A. Biochemical and Biophysical Research Communications, Vol.432(3), p519-525, Mar 2013.

 

95.

Hypothalamic ATF3 is involved in regulating glucose and energy metabolism in mice. Lee Y-S, Sasaki T, Kobayashi M, Kikuchi O, Kim H-J, Yokota-Hashimoto H, Shimpuku M, Susanti V-Y, Ido-Kitamura Y, Kimura K, Inoue H, Tanaka-Okamoto M, Ishizaki H, Miyoshi J, Ohya S, Tanaka Y, Kitajima S, Kitamura T. Diabetologia, Mar 2013.


96.

Ras-related C3 botulinum toxin substrate 1 (RAC1) regulates glucose-stimulated insulin secretion via modulation of F-actin. S. Asahara, Y. Shibutani, K. Teruyama, H. Y. Inoue, Y. Kawada, H. Etoh, T. Matsuda, M. Kimura-Koyanagi, N. Hashimoto, M. Sakahara, W. Fujimoto, H. Takahashi, S. Ueda, T. Hosooka, T. Satoh, H. Inoue, M. Matsumoto, A. Aiba, M. Kasuga, Y. Kido. Diabetologia, Feb 2013.


97.

Toll-like receptor 2 and palmitic acid cooperatively contribute to the development of nonalcoholic steatohepatitis through inflammasome activation in mice. Miura K, Yang L, Rooijen N, Brenner D A, Ohnishi H, Seki E. Hepatology, Vol.57(2), p577-589, Feb 2013.


98.

Transcriptional Regulatory Factor X6 (Rfx6) Increases Gastric Inhibitory Polypeptide (GIP) Expression in Enteroendocrine K-cells and Is Involved in GIP Hypersecretion in High Fat Diet-induced Obesity*. K.Suzuki, N.Harada, S.Yamane, Y.Nakamura, K.Sasaki, D.Nasteska, E.Joo, K.Shibue, T.Harada, A.Hamasaki, K.Toyoda, K.Nagashima and N.Inagaki. The Journal of Biological Chemistry, Vol.288, p1929-1938, Jan 2013.


99.

Improved hypothermic short-term storage of isolated mouse islets by adding serum to preservation solutions. Yasuko Kimura, Teru Okitsu, Liu Xibao, Hiroki Teramae, Atsuhito Okonogi, Kentaro Toyoda, Shinji Uemoto and Masanori Fukushima. Islets, Vol.5(1), Jan 2013.


100.

Anti-diabetic effect of amorphastilbol through PPARα/γ dual activation in db/db mice. Lee W, Ham J, Kwon H C, Kim Y K, Kim S-N. Biochemical and Biophysical Research Communications, Jan 2013.

101.

Transcriptional Regulatory Factor X6 (Rfx6) Increases Gastric Inhibitory Polypeptide (GIP) Expression in Enteroendocrine K-cells and Is Involved in GIP Hypersecretion in High Fat Diet-induced Obesity. Suzuki K, Harada N, Yamane S, Nakamura Y, Sasaki K, Nasteska D, Joo E, Shibue K, Harada T, Hamasaki A,Toyoda K, Nagashima K and Inagaki N. The Journal of Biological Chemistry, Vol.288, p1929-1938, Jan 2013.


102.

Apelin inhibits diet-induced obesity by enhancing lymphatic and blood vessel integrity. Sawane M, Kajiya K, Kidoya H, Takagi M, Muramatsu F and Takakura N. Diabetes, 2013.


103.

Beneficial effects of Allium sativum L. stem extract on lipid metabolism and antioxidant status in obese mice fed a high fat diet. Kim I, Kim H-R, Kim J-H, Om A-S. Journal of the Science of Food and Agriculture, 2013.


104.

Intake of mulberry 1-deoxynojirimycin prevents diet-induced obesity through increases in adiponectin in mice. Tsuduki T, Kikuchi I, Kimura T, Nakagawa K, Miyazawa T. Food Chemistry, Vol.139(14), p16-23, 2013.


105.

Effect of Mukitake mushroom (Panellus serotinus) on the pathogenesis of lipid abnormalities in obese, diabetic ob/ob mice. Inoue N, Inafuku M, Shirouchi B, Nagao K and Yanagita T. Lipids in Health and Disease, Vol.12(18), 2013.


106.

Pax6 Directly Down-Regulates Pcsk1n Expression Thereby Regulating PC1/3 Dependent Proinsulin Processing. Liu T., Zhao Y., Tang N., Feng R., Yang X., Lu N., Wen J., Li L. PLOS ONE, Vol.7(10), Oct 2012.


107.

Anti-Diabetic Atherosclerosis Effect of Prunella vulgaris in db/db Mice with Type 2 Diabetes. Hwang S M, Kim J K, Lee Y J, Yoon J J, Lee S M, Kang D G, Lee H S. Am J Chin Med, Vol.40, 2012.


108.

Prevention mechanisms of glucose intolerance and obesity by cacao liquor procyanidin extract in high-fat diet-fed C57BL/6 mice. Y. Yamashita., M. Okabe., M. Natsume., H. Ashida. Archives of Biochemistry and Biophysics, Available online 23 March 2012, In Press


109.

The Action of D-Dopachrome Tautomerase as an Adipokine in Adipocyte Lipid Metabolism. T. Iwata., H. Taniguchi., M. Kuwajima., T. Taniguchi., Y. Okuda., A. Sukeno., K. Ishimoto., N. Mizusawa., K. Yoshimoto. PLos ONE, Vol. 7(3), Mar 2012.


110.

Soymorphin-5, a soy-derived μ-opioid peptide, decreases glucose and triglyceride levels through activating adiponectin and PPARα systems in diabetic KKAy mice. Y. Yamada.,.A. Muraki.,.M. Oie.,.N. Kanegawa.,.A. Oda., Y. Sawashi., K. Kaneko., M. Yoshikawa., T. Goto., N. Takahashi., T. Kawada., and K. Ohinata. American Physiological Society, Vol.302, No.4, E433-E440, 2012.


111.

Effects of Gametophytes of Ecklonia Kurome on the Levels of Glucose and Triacylglycerol in db/db, Prediabetic C57BL/6J and IFN-γ KO Mice. F. Dwiranti., M. Hiraoka., T. Taguchi., Y. Konishi., M. Tominaga., A. Tominaga. Int J B 64 iomed Sci, Vol.8, No.1, Mar 2012.


112.

Endoplasmic Reticulum Stress Inhibits STAT3-Dependent Suppression of Hepatic Gluconeogenesis via Dephosphprylation and Deacetylation. K. Kimura., T. Yamada., M. Matsumoto., Y. Kido., T. Hosooka., S. Asahara., T. Matsuda., T. Ota., H. Watanabe., Y. Sai., K. Miyamoto., S. Kaneko., M. Kasuga., H. Inoue. Diabetes, Vol.61, No.1, p61-73, 2012.


113.

Melatonin protects mice with intermittent hypoxia from oxidative stress-induced pancreatic injury. LI G., HOU G., LU W., KANG J. Sleep and Biological Rhythms, Vol.9(2), p78-85, Apr 2011.


114.

A novel dipeptidyl peptidase IV inhibitor DA-1229 ameliorates streptozotocin-induced diabetes by increasing β-cell replication and neogenesis. J, M, Cho., H, W, Jang., H, Cheon.,Y, T, Jeong., D-H, Kim., Y-M, Lim., S, Choi., E, Yang., C-Y, Shin., M, H, Son., S, H, Kim., H, Kim., M, Lee. Diabetes Research and Clinical Practice.Vol. 91(1), p72-79, 2011.



产品列表

产品编号 产品名称 产品规格 产品等级 备注
634-01481 (AKRIN-011T)LBIS® Insulin-Mouse-T 96 tests

免责声明

1. 本公司密切关注本网站发布的内容,但不保证发布内容的准确性、完整性、可靠性和最新性等。

2. 本公司不保证使用本网站期间不会出现故障或计算机病毒污染的风险。

3. 无论何种原因,使用本网站时给用户或第三方造成的任何不利或损害,本公司概不负责。此外,对于用户与其他用户或第三方之间因本网站发生的任何交易、通讯

3. 纠纷,本公司概不负责。

4. 本网站可提供的所有产品和服务均不得用于人体或动物的临床诊断或治疗,仅可用于科研等非医疗目的。如任何用户将本网站提供的产品和服务用临床诊断或治

4. 疗,以及他特定的用途或行为,本公司概不保证其安全性和有效性,并且不负任何相关的法律责任。

LBIS® 小鼠胰岛素 ELISA 试剂盒(RTU) LBIS® Mouse Insulin ELISA KIT(RTU)

产品中心 > 生命科学 > 疾病研究 > 代谢&糖尿病&肥胖症

LBIS® 小鼠胰岛素 ELISA 试剂盒(RTU)
LBIS® Mouse Insulin ELISA KIT(RTU)

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

LBIS® Mouse Insulin ELISA KIT(RTU)LBIS® 小鼠胰岛素 ELISA 试剂盒(RTU)                              LBIS® Mouse Insulin ELISA KIT(RTU)

LBIS® 小鼠胰岛素 ELISA 试剂盒(RTU)

LBIS® 小鼠胰岛素 ELISA 试剂盒(RTU)                              LBIS® Mouse Insulin ELISA KIT(RTU)

  

胰岛素是由胰脏内的胰岛β细胞分泌,分子量约 5800,等电点在 5.4 左右的一种蛋白质激素。

  A6-A11、A7-B7、A20-B-19 之间形成二硫键,在酸性溶液或者不含 Zn 离子的中性水溶液中形成二聚体,在含锌离子的中性溶液中,则形成含2个 Zn 离子的六聚体。

  肝脏、肌肉、脂肪组织是主要的靶组织,分别有以下的作用。

肝脏:促进糖原、蛋白质、脂肪酸合成、促进糖类的摄取和利用、抑制糖异生。

肌肉:糖类、氨基酸、K细胞膜通透性增大、促进糖原、蛋白质的合成、抑制蛋白质分解。

脂肪组织:葡萄糖细胞膜通透性增大、促进脂肪酸的合成。

  胰岛素是细胞内的合成单链胰岛素原通过二硫键结合一起形成的。在酶分解作用下被激活,C肽和胰岛素分离。

◆特点


● 测量范围广(100~12,000 pg/mL)

● 短时间测定(总的反应时间:2小时50分钟)

● 微量样品(标准操作:10 μL)可测

● 使用对环境无害的防腐剂

● 全部试剂均为液体,可直接使用

● 精密的测定精度和高再现性

● 有效期限为12个月

◆构成

组成部分

状态

容量

(A) 抗体固相化 96 孔板

洗净后使用

96 wells(8×12)/1 块

(B)胰岛素标准溶液(小鼠)

①12,000 ②4,800 ③2,000 ④800 

⑤300 ⑥100 (pg/mL)

稀释后使用

各100 μL/1 瓶

(C) 缓冲液

即用

60 mL/1 瓶

(D) 生物素结合抗胰岛素抗体

稀释后使用

12 μL/1 瓶

(E) 过氧化物・抗生物素蛋白结合物

稀释后使用

12 μL/1 瓶

(F) 显色液(TMB)

即用

12 mL/1 瓶

(H) 反应终止液(1M H2SO4)※小心轻放

即用

12 mL/1 瓶

( I ) 浓缩洗净液(10×)

稀释后使用

100 mL/1 瓶

封板膜

3 张

使用说明书

1 份

 

◆样品信息

小鼠的血清•血浆•培养液

10 μL/well(标准操作)

※血浆采血建议使用肝素处理血液

◆测量范围

100~12,000 pg/mL(标准曲线范围)

◆Validation data

 

精度测试(组内变异)

 

样品

A

B

C

1

844

1559

5348

2

831

1584

5419

3

829

1555

5377

4

826

1591

5329

5

833

1599

5299

6

841

1525

5304

mean

834

1569

5346

SD

7.04

27.9

45.9

CV(%)

0.84

1.8

0.86

单位:pg/mL

重复性测试(组间变异)

 

测量日/样品

D

E

F

第0天

442

3510

6919

第1天

441

3494

6878

第2天

441

3500

6836

第3天

435

3533

6827

mean

440

3510

6865

SD

3.45

17.0

42.0

CV(%)

0.78

0.48

0.61

单位:pg/mL n=3

  

加标回收测试

 

样品G

添加量

实测值

回收量

回收率(%)

0.00

322

150

466

144

96.0

300

613

291

97.0

600

917

595

99.2

1200

1558

1266

106

单位:pg/mL n=3



样品H

添加量

实测值

回收量

回收率(%)

0.00

1672

500

2162

490

98.0

1500

3202

1530

102

3000

4573

2901

96.7

4500

6001

4329

96.2

单位:pg/mL n=3

 

稀释直线性测试

 

用稀释缓冲液分4次连续稀释2个血清样品的测量结果,直线回归方程的R2在0.9988~0.9998之间。

参考文献

 1.

Deficiency of COX7RP, a mitochondrial supercomplex assembly promoting factor, lowers blood glucose level in mice. Shiba S, Ikeda K, Horie-Inoue K, Nakayama A, Tanaka T, Inoue S. Sci Rep. 2017 Aug 8;7(1):7606.


 2.

Long-term dietary nitrite and nitrate deficiency causes the metabolic syndrome, endothelial dysfunction and cardiovascular death in mice. Kina-Tanada M, Sakanashi M, Tanimoto A, Kaname T, Matsuzaki T, Noguchi K, Uchida T, Nakasone J, Kozuka C, Ishida M, Kubota H, Taira Y, Totsuka Y, Kina SI, Sunakawa H, Omura J, Satoh K, Shimokawa H, Yanagihara N, Maeda S, Ohya Y, Matsushita M, Masuzaki H, Arasaki A, Tsutsui M. Diabetologia. 2017 Jun;60(6):1138-1151. 


 3.

α-Mangostin ameliorates hepatic steatosis and insulin resistance by inhibition C-C chemokine receptor 2. Kim HM, Kim YM, Huh JH, Lee ES, Kwon MH, Lee BR, Ko HJ, Chung CH. PLoS One. 2017 Jun 9;12(6):e0179204


 4.

Long-term dietary nitrite and nitrate deficiency causes the metabolic syndrome, endothelial dysfunction and cardiovascular death in mice. Kina-Tanada M, Sakanashi M, Tanimoto A, Kaname T, Matsuzaki T, Noguchi K, Uchida T, Nakasone J, Kozuka C, Ishida M, Kubota H, Taira Y, Totsuka Y, Kina SI, Sunakawa H, Omura J, Satoh K, Shimokawa H, Yanagihara N, Maeda S, Ohya Y, Matsushita M, Masuzaki H, Arasaki A, Tsutsui M. Diabetologia. 2017 Jun;60(6):1138-1151.


 5.

Anti-diabetic effects of luteolin and luteolin-7-O-glucoside on KK-A(y) mice. Zang Y, Igarashi K, Li Y. Biosci Biotechnol Biochem. 2016 Aug;80(8):1580-6.


 6.

Insulin-Inducible SMILE Inhibits Hepatic Gluconeogenesis. Lee JM, Seo WY, Han HS, Oh KJ, Lee YS, Kim DK, Choi S, Choi BH, Harris RA, Lee CH, Koo SH, Choi HS Diabetes. 2016 Jan;65(1):62-73.


 7.

Metabolomics-based search for therapeutic agents for non-alcoholic steatohepatitis Yoshihiko Terashima, Shin Nishiumi , Akihiro Minami, Yuki Kawano, Namiko Hoshi, Takeshi Azuma, Masaru Yoshida, Archives of Biochemistry and Biophysics, Vol.555–556, p55-65, Aug 2014.

 8.

Indirect Effects of Glucagon-Like Peptide-1 Receptor Agonist Exendin-4 on the Peripheral Circadian Clocks in Mice. Hitoshi Ando,Kentarou Ushijima,Akio Fujimura PLoS One. 2013 Nov 15;8(11):e81119.


 9.

Effects of Two Types of Non-Digestible Carbohydrates on Energy Metabolism in Mice. Akiyama, Takashi; Nakatani, Sachie; Kobata, Kenji; Wada, Masahiro Journal of Chitin and Chitosan Science, Vol.2, Number 3, p223-232(10), Sep 2014.


10.

Cinnamtannin A2, a Tetrameric Procyanidin, Increases GLP-1 and Insulin Secretion in Mice. Yamashita Y, Okabe M, Natsume M, Ashida H. Bioscience, Biotechnology, and Biochemistry , Vol.77(4), 2013.



产品列表

产品编号 产品名称 产品规格 产品等级 备注
633-23919  (AKRIN-011RU)LBIS® Mouse Insulin ELISA Kit(RTU) 
LBIS® 小鼠胰岛素 ELISA试剂盒(RTU)
96 tests

免责声明

1. 本公司密切关注本网站发布的内容,但不保证发布内容的准确性、完整性、可靠性和最新性等。

2. 本公司不保证使用本网站期间不会出现故障或计算机病毒污染的风险。

3. 无论何种原因,使用本网站时给用户或第三方造成的任何不利或损害,本公司概不负责。此外,对于用户与其他用户或第三方之间因本网站发生的任何交易、通讯

3. 纠纷,本公司概不负责。

4. 本网站可提供的所有产品和服务均不得用于人体或动物的临床诊断或治疗,仅可用于科研等非医疗目的。如任何用户将本网站提供的产品和服务用临床诊断或治

4. 疗,以及他特定的用途或行为,本公司概不保证其安全性和有效性,并且不负任何相关的法律责任。

LBIS牛血清白蛋白ELSIA试剂盒 LBIS Bovine Albumin ELISA Kit

产品中心 > 生命科学 > 疾病研究 > 代谢&糖尿病&肥胖症

LBIS牛血清白蛋白ELSIA试剂盒
LBIS Bovine Albumin ELISA Kit

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

LBIS牛血清白蛋白ELSIA试剂盒


免责声明

1. 本公司密切关注本网站发布的内容,但不保证发布内容的准确性、完整性、可靠性和最新性等。

2. 本公司不保证使用本网站期间不会出现故障或计算机病毒污染的风险。

3. 无论何种原因,使用本网站时给用户或第三方造成的任何不利或损害,本公司概不负责。此外,对于用户与其他用户或第三方之间因本网站发生的任何交易、通讯

3. 纠纷,本公司概不负责。

4. 本网站可提供的所有产品和服务均不得用于人体或动物的临床诊断或治疗,仅可用于科研等非医疗目的。如任何用户将本网站提供的产品和服务用临床诊断或治

4. 疗,以及他特定的用途或行为,本公司概不保证其安全性和有效性,并且不负任何相关的法律责任。

增加3种产品! 可检测血清血浆样本 LBIS® 试剂盒

产品中心 > 生命科学 > 疾病研究 > 代谢&糖尿病&肥胖症

增加3种产品! 可检测血清血浆样本 LBIS® 试剂盒

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

增加3种产品! 可检测血清血浆样本 LBIS® 试剂盒增加3种产品!

正常血清/血浆样本也可检测

LBIS® 系列



◆LBIS® Human IL-6 ELISA Kit


  IL-6 是 189 个氨基酸的分泌性糖蛋白,是促进B细胞分化成抗体生成细胞的细胞因子。有研究表示 ,IL-6 与类风湿关节炎的病情有关,其作用在类风湿关节炎等自身免疫性疾病、炎症性疾病领域受到关注。

  本试剂盒能短时间,高灵敏度检测人血清(血浆)中的微量 IL-6。

产品概要

● 标准曲线范围:1.16~500 pg/mL

● 检测时间:总反应时间 3 小时 50 分

● 样本量:100 μL

● 测定波长:主波长 450 nm /副波长 620 nm

● 样本:人血清/血浆(肝素/EDTA)

增加3种产品! 可检测血清血浆样本 LBIS® 试剂盒


〈标准曲线〉

增加3种产品! 可检测血清血浆样本 LBIS® 试剂盒

 


◆LBIS® Human IL-8(CXCL8)ELISA Kit


  IL-8 是通过炎症性细胞因子的刺激在成纤维细胞或单核细胞、血管内皮细胞中产生的 72 或 77 个氨基酸的 2 种类型的炎症性 CXC 趋化因子。IL-8 与多种疾病的相关,并在类风湿关节炎、哮喘等呼吸道疾病、痛风、牙周炎、癌症等研究领域受到了关注。

  本试剂盒能短时间,高灵敏度检测人血清(血浆)中的微量 IL-8。

产品概要

● 标准曲线范围:0.686~500 pg/mL

● 检测时间:总反应时间 3 小时 50 分

● 样本量:100 μL

● 测定波长:主波长 450 nm / 副波长 620 nm

● 样本:人血清/血浆(肝素/EDTA)


〈标准曲线〉

增加3种产品! 可检测血清血浆样本 LBIS® 试剂盒

 


◆LBIS® Human TNF-α ELISA Kit


  TNF-α 是能引起移植到小鼠中的肿瘤发生出血性坏死的诱导因子,是由 157 个氨基酸组成的炎症性细胞因子。TNF-α 与多种疾病相关,在类风湿关节炎、炎症、糖尿病・高血脂、肾病、白血病、骨质疏松等领域受到关注。

  本试剂盒能短时间,高灵敏度检测人血清(血浆)中的微量 TNF-α。


产品概要

● 标准曲线范围:2.05~500 pg/mL

● 检测时间:总反应时间 3 小时 50 分

● 样本量:100 μL

● 测定波长:主波长 450 nm / 副波长 620 nm

● 样本:人血清/血浆(肝素/EDTA)


〈标准曲线〉

增加3种产品! 可检测血清血浆样本 LBIS® 试剂盒



欲了解相关信息请点击文字:

新产品 人IL-6/IL-8/TNF-α ELISA试剂盒发售通知

Lbis® 疾病相关动物模型ELISA试剂盒系列


产品列表

产品编号 产品名称 产品规格 产品等级 备注
635-42311 人IL-6 ELISA试剂盒,AKH-IL6
LBIS®  Human IL-6 ELISA Kit
96次
632-42321 人IL-8(CXCL8) ELISA试剂盒,AKH-IL8
LBIS®  Human IL-8(CXCL8) ELISA Kit
96次
639-42331 人 TNF-α ELISA试剂盒,AKH-TNFA
LBIS®  Human TNF-α ELISA Kit
96次

免责声明

1. 本公司密切关注本网站发布的内容,但不保证发布内容的准确性、完整性、可靠性和最新性等。

2. 本公司不保证使用本网站期间不会出现故障或计算机病毒污染的风险。

3. 无论何种原因,使用本网站时给用户或第三方造成的任何不利或损害,本公司概不负责。此外,对于用户与其他用户或第三方之间因本网站发生的任何交易、通讯

3. 纠纷,本公司概不负责。

4. 本网站可提供的所有产品和服务均不得用于人体或动物的临床诊断或治疗,仅可用于科研等非医疗目的。如任何用户将本网站提供的产品和服务用临床诊断或治

4. 疗,以及他特定的用途或行为,本公司概不保证其安全性和有效性,并且不负任何相关的法律责任。

代理代谢系列,Adipogen,FUJIFILM Wako Shibayagi,CHS-828,LBIS猪胰岛素 ELISA试剂盒

品牌 产品编号 产品名称 规格
(生产商编号)
FUJIFILM Wako Shibayagi 633-01451 LBIS Dog Insulin ELISA Kit 96 tests
—————— LBIS狗胰岛素 ELISA试剂盒
Adipogen AG-45A-0046YTP-KI01 Irisin Competitive ELISA Kit 2 x 96 wells
—————— 新型鸢尾素竞争ELISA 试剂盒 (2盒)
FUJIFILM Wako Shibayagi 630-01461 LBIS Porcine Insulin ELISA Kit 96 tests
—————— LBIS猪胰岛素 ELISA试剂盒
FUJIFILM Wako Shibayagi 634-13071 LBIS Mouse/Rat HMW Adiponectin ELISA Kit 96 tests
—————— LBIS小鼠/大鼠高分子量脂联素 ELISA试剂盒
FUJIFILM Wako Shibayagi 631-07231 LBIS Mouse C-peptide ELISA Kit (U-type) 96 tests
—————— LBIS小鼠 C-肽 ELISA试剂盒(U型)
FUJIFILM Wako Shibayagi 639-07271 LBIS Rat C-peptide ELISA Kit (U-type) 96 tests
—————— LBIS大鼠 C-肽 ELISA试剂盒(U型)
FUJIFILM Wako Shibayagi 637-10381 LBIS Leptin-Mouse 96 tests
—————— LBIS小鼠瘦素 ELISA试剂盒
FUJIFILM Wako Shibayagi 634-04301 LBIS Mouse Albumin ELISA Kit 96 tests
—————— LBIS小鼠白蛋白 ELISA试剂盒
FUJIFILM Wako Shibayagi 631-04311 LBIS Rat Albumin ELISA Kit 96 tests
—————— LBIS大鼠白蛋白 ELISA试剂盒
FUJIFILM Wako Shibayagi 631-07091 LBIS Bovine Albumin ELISA Kit 96 tests
—————— 牛白蛋白ELISA试剂盒
Adipogen AG-40A-0031Y-C010 Nampt (Visfatin/PBEF) (human) (rec.) 10 µg
—————— 人Nampt (内脂素/PBEF)重组蛋白
FUJIFILM Wako Shibayagi 638-25561 LBIS Mouse Urinary Albumin Assay Kit (S-type) 60 tests
—————— LBIS小鼠尿白蛋白检测试剂盒(S型)
Adipogen AG-40A-0031Y-3010 Nampt (Visfatin/PBEF) (human) (rec.) 3 x 10 µg
—————— 人Nampt (内脂素/PBEF)重组蛋白,大包装
FUJIFILM Wako Shibayagi 634-25301 LBIS Rat Urinary Albumin Assay Kit (S-type) 60 tests
—————— LBIS大鼠尿白蛋白检测试剂盒(S型)
Adipogen AG-27B-0013PF-C100 anti-IL-33 (mouse), mAb (rec.) (blocking) (Bondy-1-1) (preservative free) 100 µg
—————— 抗小鼠白介素-33单抗(封闭作用)(Bondy-1-1)(不含防腐剂)
FUJIFILM Wako Shibayagi 635-13741 LBIS GH-Rat 96 tests
—————— LBIS大鼠生长激素(GH) ELISA试剂盒
Adipogen AG-27B-0013PF-C500 anti-IL-33 (mouse), mAb (rec.) (blocking) (Bondy-1-1) (preservative free) 500 µg
—————— 抗小鼠白介素-33单抗(封闭作用)(Bondy-1-1)(不含防腐剂)
FUJIFILM Wako Shibayagi 636-23921 LBIS Rat LH ELISA Kit (S-type) 96 tests
—————— LBIS大鼠促黄体生成素(LH)ELISA试剂盒(S型)
FUJIFILM Wako Shibayagi 639-02891 LBIS Mouse IgE ELISA Kit 96 tests
—————— LBIS小鼠免疫球蛋白E(IgE) ELISA试剂盒
FUJIFILM Wako Shibayagi 636-07661 LBIS Mouse anti-OVA-IgG1 ELISA Kit 96 tests
—————— LBIS小鼠卵清蛋白特异性免疫球蛋白G1(OVA-IgG1) ELISA试剂盒
FUJIFILM Wako Shibayagi 639-13761 LBIS KLH (TDAR) Rat-IgM ELISA Kit 96 tests
—————— LBIS血蓝蛋白(KLH)(T细胞依赖性抗原)大鼠免疫球蛋白M(IgM) ELISA试剂盒
Adipogen AG-40B-0155-C010 Neuregulin-4 (human) (rec.) 10 µg
—————— 神经调节蛋白-4 (人) (重组)
FUJIFILM Wako Shibayagi 632-13751 LBIS KLH (TDAR) Rat-IgG ELISA Kit 96 tests
—————— LBIS血蓝蛋白(KLH)(T细胞依赖性抗原)大鼠免疫球蛋白G(IgG) ELISA试剂盒
Adipogen AG-40B-0155-3010 Neuregulin-4 (human) (rec.) 3 x 10 µg
—————— 神经调节蛋白-4 (人) (重组) ,大包装
FUJIFILM Wako Shibayagi 633-02671 LBIS Mouse IgG Rheumatoid Factor ELISA Kit 96 tests
—————— LBIS小鼠免疫球蛋白G(IgG)类风湿因子 ELISA试剂盒
FUJIFILM Wako Shibayagi 630-02681 LBIS Mouse IgM Rheumatoid Factor ELISA Kit 96 tests
—————— LBIS小鼠免疫球蛋白M(IgM)类风湿因子 ELISA试剂盒
FUJIFILM Wako Shibayagi 637-02691 LBIS Mouse anti-dsDNA ELISA Kit 96 tests
—————— LBIS小鼠抗双链DNA ELISA试剂盒
Adipogen AG-45A-0004YEK-KI01 Adiponectin (mouse) ELISA Kit 96 wells
—————— 脂联素 (小鼠) ELISA试剂盒
Adipogen AG-45A-0004YTP-KI01 Adiponectin (mouse) ELISA Kit 2 x 96 wells
—————— 脂联素 (小鼠) ELISA试剂盒 (2盒)
Adipogen AG-40A-0112-C010 FTO (human) (rec.) (His) 10 µg
—————— 人FTO重组蛋白(His标签)
Adipogen AG-40A-0112-C050 FTO (human) (rec.) (His) 50 µg
—————— 人FTO重组蛋白(His标签)
Adipogen AG-45A-0008YEK-KI01 Nampt (Visfatin/PBEF) (human) (IntraCellular) ELISA Kit 96 wells
—————— NAMPT(内脂素/ PBEF)(人)(胞内)ELISA试剂盒
Adipogen AG-40A-0056Y-C010 Nampt (Visfatin/PBEF) (mouse) (rec.) 10 µg
—————— 小鼠Nampt (内脂素/PBEF)重组蛋白
Adipogen AG-40A-0056Y-3010 Nampt (Visfatin/PBEF) (mouse) (rec.) 3 x 10 µg
—————— 小鼠Nampt (内脂素/PBEF)重组蛋白套装
Adipogen AG-40A-0064Y-C010 Vaspin (human) (rec.) 10 µg
—————— 人脂肪因子重组蛋白
Adipogen AG-45A-0017YEK-KI01 Vaspin (human) ELISA Kit 96 wells
—————— 脂肪因子(人) ELISA 试剂盒
Adipogen AG-40A-0064Y-3010 Vaspin (human) (rec.) 3 x 10 µg
—————— 人脂肪因子重组蛋白套装
Adipogen AG-45A-0017YTP-KI01 Vaspin (human) ELISA Kit 2 x 96 wells
—————— 脂肪因子 (人) ELISA 试剂盒 (2盒)
Adipogen AG-25A-0025B-C050 anti-Nampt (Visfatin/PBEF) (human), pAb (Biotin) 50 µg
—————— 抗人Nampt (内脂素/PBEF)多抗(生物素标记)
Adipogen AG-25A-0025-C100 anti-Nampt (Visfatin/PBEF) (human), pAb 100 µg
—————— 抗人Nampt (内脂素/PBEF)多抗
Adipogen AG-45A-0043YEK-KI01 Progranulin (rat) ELISA Kit 96 wells
—————— 颗粒蛋白前体 (大鼠) ELISA 试剂盒
Adipogen AG-45A-0043YTP-KI01 Progranulin (rat) ELISA Kit 2 x 96 wells
—————— 颗粒蛋白前体 (大鼠) ELISA 试剂盒 (2盒)
Adipogen AG-CR1-0064-M005 CHS-828 5 mg
——————
Adipogen AG-CR1-0064-M025 CHS-828 25 mg
——————
Adipogen AG-25A-0043-C100 anti-Obestatin (human), pAb 100 µg
—————— 抗人肥胖抑制素多抗
FUJIFILM Wako Shibayagi 639-07651 LBIS Mouse anti-OVA-IgE ELISA Kit 96 tests
—————— 小鼠卵清蛋白特异性免疫球蛋白E(OVA-IgE) ELISA试剂盒
Adipogen AG-45A-0014YTP-KI01 ANGPTL3 (human) ELISA Kit (Twin Plex) 2 x 96 wells
—————— 血管生成素样蛋白3 (人) ELISA 试剂盒(2盒)
Adipogen AG-45A-0016YTP-KI01 ANGPTL6 (human) ELISA Kit (Twin Plex) 2 x 96 wells
—————— 血管生成素样蛋白3 (人) ELISA 试剂盒(2盒)
FUJIFILM Wako 290-63701 LabAssay™ Triglyceride 1000 tests
—————— LabAssay™ 甘油三酯检测试剂盒
和光纯药
FUJIFILM Wako 290-65901 LabAssay™ Creatinine 500 tests
—————— LabAssay™ 肌酐检测试剂盒
和光纯药
FUJIFILM Wako 291-58601 LabAssay™ ALP 900 tests
—————— LabAssay™ 碱性磷酸酶检测试剂盒
和光纯药
Adipogen AG-40T-0018-C020 PCAF (mouse) (rec.) (His) (highly active) 20 ug
—————— 重组小鼠PCAF(His标签)(高活性)
Adipogen AG-40T-0023-C002 p300 (human) (rec.) (His) (highly active) 2 ug
—————— 重组人p300(His标签)(高活性)
FUJIFILM Wako 294-63601 LabAssay™ NEFA 750 tests
—————— LabAssay™ 游离脂肪酸检测试剂盒
和光纯药
FUJIFILM Wako 294-65801 LabAssay™ Cholesterol 1000 tests
—————— LabAssay™ 胆固醇检测试剂盒
和光纯药
FUJIFILM Wako 296-63801 LabAssay™ Phospholipid 1300 tests
—————— LabAssay™ 磷脂检测试剂盒
和光纯药
Chimerigen CHI-HF-21006-3050 IL-6 (human):Fc (human) (rec.) 3 x 50 µg
—————— 白介素6 (人):Fc (人) (重组) 套装
Adipogen AG-45A-0015YTP-KI01 ANGPTL3 (mouse/rat) Dual ELISA Kit (Twin Plex) 2 x 96 wells
—————— 血管生成素样蛋白3 (小鼠/大鼠) 双 ELISA 试剂盒 (2盒)
FUJIFILM Wako 298-65701 LabAssay™ Glucose 1000 tests
—————— LabAssay™ 葡萄糖检测试剂盒(Mutarotase-GOD法)
和光纯药
Adipogen AG-45A-0023YTP-KI01 Resistin (human) ELISA Kit (Twin Plex) 2 x 96 wells
—————— 抵抗素 (人) ELISA 试剂盒 (2盒)
Adipogen AG-45A-0029YTP-KI01 Sirtuin 1 (human) (IntraCellular) ELISA Kit (Twin Plex) 2 x 96 wells
—————— Sirtuin 1 (人) (细胞裂解液) ELISA 试剂盒 (2盒)
FUJIFILM Wako 295-78901 LabAssay™ Ammonia 700 tests
—————— LabAssay™ 氨检测试剂盒
和光纯药
FUJIFILM Wako Shibayagi 633-15121 LBIS GLP-1(Active) ELISA Kit 96 tests
—————— LBIS胰高血糖素样肽-1(GLP-1)(活性) ELISA试剂盒
Adipogen AG-45B-5001-KI01 FGF-21 (human) ELISA Kit 96 wells
—————— 成纤维细胞生长因子-21 (人) ELISA 试剂盒
Adipogen AG-40A-0094-C010 Vaspin (mouse) (rec.) 10 ug
—————— 小鼠脂肪因子重组蛋白
Adipogen AG-45B-5002-KI01 FGF-19 (human) ELISA Kit 96 wells
—————— 成纤维细胞生长因子-19 (人) ELISA 试剂盒
Adipogen AG-40A-0094-C050 Vaspin (mouse) (rec.) 50 ug
—————— 小鼠脂肪因子重组蛋白
Adipogen AG-45B-5003-KI01 Lipocalin-2 (human) ELISA Kit 96 wells
—————— 脂质运载蛋白-2 (人) ELISA 试剂盒
Adipogen AG-45B-5004-KI01 Lipocalin-2 (mouse) ELISA Kit 96 wells
—————— 脂质运载蛋白-2 (小鼠) ELISA 试剂盒
FUJIFILM Wako Shibayagi 632-04341 LBIS Rat IgE ELISA Kit 96 tests
—————— LBIS大鼠免疫球蛋白E(IgE)ELISA试剂盒
FUJIFILM Wako Shibayagi 633-10643 Human Apo B-48 ELISA Kit 96 tests
—————— 人血清载脂蛋白B-48(ApoB-48)ELISA试剂盒
Adipogen AG-45A-0005YEK-KI01 Adiponectin (rat) ELISA Kit 96 wells
—————— 脂联素 (大鼠) ELISA试剂盒
Adipogen AG-45A-0005YTP-KI01 Adiponectin (rat) ELISA Kit (Twin Plex) 2 x 96 wells
—————— 脂联素 (大鼠) ELISA试剂盒 (2盒)
Adipogen AG-45A-0008YTP-KI01 Nampt (Visfatin/PBEF) (human) (IntraCellular) ELISA Kit (Twin Plex) 2 x 96 wells
—————— NAMPT(内脂素/ PBEF)(人)(胞内)ELISA试剂盒(2盒)
Adipogen AG-45A-0013YEK-KI01 Clusterin (human) Competitive ELISA Kit 96 wells
—————— 丛生蛋白 (人) 竞争性 ELISA 试剂盒
Adipogen AG-45A-0013YTP-KI01 Clusterin (human) Competitive ELISA Kit (Twin Plex) 2×96 wells
—————— 丛生蛋白 (人) 竞争性 ELISA 试剂盒(2盒)
Adipogen AG-45A-0037YEK-KI01 GPX1 (human) ELISA Kit 96 wells
—————— GPX1 (人) ELISA 试剂盒
Adipogen AG-45A-0037YTP-KI01 GPX1 (human) ELISA Kit (Twin Plex) 2 x 96 wells
—————— GPX1 (人) ELISA 试剂盒(2盒)
Adipogen AG-20A-0019-C050 anti-Leptin (human), mAb (HLEP 155) 50 ug
—————— 抗人瘦素单抗(HELP 155))
Adipogen AG-20A-0019-C100 anti-Leptin (human), mAb (HLEP 155) 100 ug
—————— 抗人瘦素单抗(HELP 155))

LBIS® 大鼠胰岛素 ELISA 试剂盒(T 型) LBIS® Insulin-Rat-T

产品中心 > 生命科学 > 疾病研究 > 代谢&糖尿病&肥胖症

LBIS® 大鼠胰岛素 ELISA 试剂盒(T 型)
LBIS® Insulin-Rat-T

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

LBIS® Insulin-Rat-TLBIS® 大鼠胰岛素 ELISA 试剂盒(T 型)                              LBIS® Insulin-Rat-T

LBIS® 大鼠胰岛素 ELISA 试剂盒(T 型)

  胰岛素是由胰脏内的胰岛β细胞分泌,分子量约 5800,等电点在 5.4 左右的一种蛋白质激素。

  A6-A11、A7-B7、A20-B-19 之间形成二硫键,在酸性溶液或者不含 Zn 离子的中性水溶液中形成二聚体,在含锌离子的中性溶液中,则形成含2个 Zn 离子的六聚体。

肝脏、肌肉、脂肪组织是主要的靶组织,分别有以下的作用。

肝脏:促进糖原、蛋白质、脂肪酸合成、促进糖类的摄取和利用、抑制糖异生。

肌肉:糖类、氨基酸、K细胞膜通透性增大、促进糖原、蛋白质的合成、抑制蛋白质分解。

脂肪组织:葡萄糖细胞膜通透性增大、促进脂肪酸的合成。

胰岛素是细胞内的合成单链胰岛素原通过二硫键结合一起形成的。在酶分解作用下被激活,C肽和胰岛素分离。

◆特点

● 短时间测定(总的反应时间:3小时)

● 微量样品(标准操作:10 μL)可测

● 使用对环境无害的防腐剂

● 全部试剂均为液体,可直接使用

● 精密的测定精度和高再现性

● 操作简便,不需要特别的预处理

● 有效期限为12个月

◆构成

组成

状态

容量

(A) 抗体固相化 96 孔板

洗净后使用

96   wells(8×12)/1 块

(B) 胰岛素标准溶液(大鼠)(200 ng/mL)

稀释后使用

25 μL/1 瓶

(C) 缓冲液

即用

60 mL/1 瓶

(D) 生物素结合抗胰岛素抗体

稀释后使用

10 μL/1 瓶

(E) 过氧化物・抗生物素蛋白结合物

稀释后使用

20 μL/1 瓶

(F) 显色液(TMB)

即用

12 mL/1 瓶

(H) 反应终止液(1M H2SO4)※小心轻放

即用

12 mL/1 瓶

( I ) 浓缩洗净液(10×)

稀释后使用

100 mL/1 瓶

封板膜

3 张

使用说明书

1 份

 

◆样品信息

大鼠的血清•血浆•培养液

10 μL/well(标准操作)

※血浆采血建议使用肝素处理血液

◆测量范围

0.156~10 ng/mL(标准曲线范围)

◆Validation data

精度测试(组内变异)

 

样品

A

B

C

D

1

0.589

1.211

2.600

4.991

2

0.568

1.228

2.600

4.971

3

0.568

1.228

2.532

5.036

4

0.557

1.211

2.538

5.026

5

0.557

1.253

2.582

4.925

6

0.578

1.220

2.563

4.880

7

0.578

1.228

2.618

5.031

8

0.536

1.228

2.618

4.885

mean

0.566

1.226

2.581

4.968

SD

0.0165

0.0131

0.0340

0.0645

CV(%)

2.92

1.07

1.32

1.30

单位:ng/mL

 

 

重复性测试(组间变异)

 

测量日/样品

E

F

G

第0天

6.74

3.31

1.16

第1天

6.69

3.25

1.22

第2天

6.23

3.21

1.21

mean

6.55

3.25

1.20

SD

0.2792

0.0479

0.0325

CV(%)

4.3

1.5

2.7

单位:ng/mL n=5

 

 

加标回收测试

 

样品H

添加量

理论值

实测值

回收率(%)

0

0.996

0.500

1.496

1.484

99.2

1.000

1.996

2.048

103

2.000

2.996

2.779

92.7

单位:ng/mL

 

样品I

添加量

理论值

实测值

回收率(%)

0

1.086

0.500

1.586

1.562

98.5

1.000

2.086

2.061

98.8

2.000

3.086

2.753

89.2

单位:ng/mL

 

样品J

添加量

理论值

实测值

回收率(%)

0

1.160

0.500

1.660

1.637

98.6

1.000

2.160

2.054

95.1

2.000

3.166

2.963

93.6

单位:ng/mL

 

 

稀释直线性测试

 

用稀释缓冲液分4次连续稀释2个血清样品的测量结果,直线回归方程的R2在0.9983~0.9992之间。

参考文献


 1.

Canagliflozin potentiates GLP-1 secretion and lowers the peak of GIP secretion in rats fed a high-fat high-sucrose diet. Hira T, Koga T, Sasaki K, Hara H. Biochem Biophys Res Commun. 2017 Oct 14;492(2):161-165.


 2.

Imidacloprid insecticide exposure induces stress and disrupts glucose homeostasis in male rats. Khalil SR, Awad A, Mohammed HH, Nassan MA. Environ Toxicol Pharmacol. 2017 Oct;55:165-174.


 3.

Effects of short-term fasting on the Akt-mediated pathway involved in protein metabolism in chicken skeletal muscle. Saneyasu T, Tsuchii N, Nakano Y, Kitashiro A, Tsuchihashi T, Shindo H, Honda K, Kamisoyama H. Domest Anim Endocrinol. 2017 Oct;61:54-61.


 4.

Impact of difructose anhydride III, raffinose, and fructooligosaccharides on energy intake, gut hormones, and cecal fermentation in rats fed a high-fat and high-sucrose diet. Hira T, Yanagihara K, Koga T, Takahashi K, Nagura T, Uchino H, Hara H. Biosci Biotechnol Biochem. 2017 Sep 27:1-9.


 5.

Branched-chain amino acid supplementation restores reduced insulinotropic activity of a low-protein diet through the vagus nerve in rats. Horiuchi M, Takeda T, Takanashi H, Ozaki-Masuzawa Y, Taguchi Y, Toyoshima Y, Otani L, Kato H, Sone-Yonezawa M, Hakuno F, Takahashi SI, Takenaka A. Nutr Metab (Lond). 2017 Sep 15;14:59.


 6.

Role of Glyceraldehyde-derived AGEs and Mitochondria in Superoxide Production in Femoral Artery of OLETF Rat and Effects of Pravastatin. Hori E, Kikuchi C, Nagami C, Kajikuri J, Itoh T, Takeuchi M, Matsunaga T. Biol Pharm Bull. 2017 Aug 22.


 7.

Glucagon-like peptide-1 reduces pancreatic β-cell mass through hypothalamic neural pathways in high-fat diet-induced obese rats. Ando H, Gotoh K, Fujiwara K, Anai M, Chiba S, Masaki T, Kakuma T, Shibata H. Sci Rep. 2017 Jul 17;7(1):5578.


 8.

Beneficial effect of combined treatment with octreotide and pasireotide in PCK rats, an orthologous model of human autosomal recessive polycystic kidney disease. Kugita M, Nishii K, Yamaguchi T, Suzuki A, Yuzawa Y, Horie S, Higashihara E, Nagao S PLoS One. 2017 May 18;12(5):e0177934.


 9.

Green tea extract intake during lactation modified cardiac macrophage infiltration and AMP-activated protein kinase phosphorylation in weanling rats from undernourished mother during gestation and lactation. Matsumoto E, Kataoka S, Mukai Y, Sato M, Sato S. J Dev Orig Health Dis. 2017 Apr;8(2):178-187.


10.

Exogenous thyroxine improves glucose intolerance in insulin-resistant rats. Vazquez-Anaya G, Martinez B, Sonanez-Organis JG, Nakano D, Nishiyama A, Ortiz RM. J Endocrinol. 2017 Mar;232(3):501-511.


11.

Beneficial effects of metformin on energy metabolism and visceral fat volume through a possible mechanism of fatty acid oxidation in human subjects and rats. Tokubuchi I, Tajiri Y, Iwata S, Hara K, Wada N, Hashinaga T, Nakayama H, Mifune H, Yamada K PLoS One. 2017 Feb 3;12(2):e0171293.

12.

Resistant maltodextrin or fructooligosaccharides promotes GLP-1 production in male rats fed a high-fat and high-sucrose diet, and partially reduces energy intake and adiposity. Hira T, Suto R, Kishimoto Y, Kanahori S, Hara H. Eur J Nutr. 2017 Feb 4.


13.

Lactoferrin ameliorates corticosterone-related acute stress and hyperglycemia in rats. Maekawa Y. Sugiyama A, Takeuchi T. J Vet Med Sci. 2017 Feb 28;79(2):412-417.


14.

Dioscorea esculenta-induced increase in muscle sex steroid hormones is associated with enhanced insulin sensitivity in a type 2 diabetes rat model. Sato K, Fujita S, Iemitsu M. FASEB J. 2017 Feb;31(2):793-801.


15.

Mild Hyperbaric Oxygen Inhibits Growth-related Decrease in Muscle Oxidative Capacity of Rats with Metabolic Syndrome. Takemura A, Ishihara A. J Atheroscler Thromb. 2017 Jan 1;24(1):26-38.


16.

The Sodium Glucose Cotransporter 2 Inhibitor Ipragliflozin Promotes Preferential Loss of Fat Mass in Non-obese Diabetic Goto?Kakizaki Rats. Toshiyuki Takasu,  Yuka Hayashizaki,  Jiro Hirosumi,  Hideaki Minoura,  Nobuaki Amino,  Eiji Kurosaki,  Shoji Takakura. Biological and Pharmaceutical Bulletin, Vol.40 (2017), No. 5, p.675-680


17.

Anti-Prediabetic Effect of 6-O-Caffeoylsophorose in Prediabetic Rats and Its Stimulation of Glucose Uptake in L6 Myotubes. Gonzalo Miyagusuku-Cruzado,  Naoki Morishita,  Keiichi Fukui,  Norihiko Terahara,  Toshiro Matsui. Food Science and Technology Research, Vol.23(2017),  No.3, p.449-456


18.

The Sodium Glucose Cotransporter 2 Inhibitor Ipragliflozin Promotes Preferential Loss of Fat Mass in Non-obese Diabetic Goto-Kakizaki Rats. Takasu T, Hayashizaki Y, Hirosumi J, Minoura H, Amino N, Kurosaki E, Takakura S. Biol Pharm Bull. 2017;40(5):675-680.


19.

Evaluation of the Effects and Mechanism of L-Citrulline on Anti-obesity by Appetite Suppression in Obese/Diabetic KK-Ay Mice and High-Fat Diet Fed SD Rats. Kudo M, Yoshitomi H, Momoo M, Suguro S, Yamagishi Y, Gao M. Biol Pharm Bull. 2017;40(4):524-530.


20.

Exogenous thyroxine improves glucose intolerance in insulin-resistant rats. Vazquez-Anaya G, Martinez B, Sonanez-Organis JG, Nakano D, Nishiyama A, Ortiz RM. J Endocrinol. 2017 Mar;232(3):501-511


21.

Anti-prediabetic effect of rose hip (Rosa canina) extract in spontaneously diabetic Torii rats. Chen SJ, Aikawa C, Yoshida R, Kawaguchi T, Matsui T. J Sci Food Agric. 2017 Feb 9.


22.

O leuropein aglycone enhances UCP1 expression in brown adipose tissue in high-fat-diet-induced obese rats by activating β-adrenergic signaling. Oi-Kano Y, Iwasaki Y, Nakamura T, Watanabe T, Goto T, Kawada T, Watanabe K, Iwai K. J Nutr Biochem. 2017 Feb;40:209-218.


23.

Beneficial effects of metformin on energy metabolism and visceral fat volume through a possible mechanism of fatty acid oxidation in human subjects and rats. Tokubuchi I, Tajiri Y, Iwata S, Hara K, Wada N, Hashinaga T, Nakayama H, Mifune H, Yamada K. PLoS One. 2017 Feb 3;12(2):e0171293


24.

Resistant maltodextrin or fructooligosaccharides promotes GLP-1 production in male rats fed a high-fat and high-sucrose diet, and partially reduces energy intake and adiposity. Hira T, Suto R, Kishimoto Y, Kanahori S, Hara H. Eur J Nutr. 2017 Feb 4.


25.

Lactoferrin potentially facilitates glucose regulation and enhances the incretin effect. Maekawa Y, Sugiyama A, Takeuchi T. Biochem Cell Biol. 2017 Feb;95(1):155-161.


26.

Mild Hyperbaric Oxygen Inhibits Growth-related Decrease in Muscle Oxidative Capacity of Rats with Metabolic Syndrome. Takemura A, Ishihara A. J Atheroscler Thromb. 2017 Jan 1;24(1):26-38.


27.

Intracellular alkalinization by phosphate uptake via type III sodium-phosphate cotransporter participates in high-phosphate-induced mitochondrial oxidative stress and defective insulin secretion. Nguyen TT, Quan X, Xu S, Das R, Cha SK, Kong ID, Shong M, Wollheim CB, Park KS. FASEB J. 2016 Dec;30(12):3979-3988


28.

Plekhs1 and Prdx3 are candidate genes responsible for mild hyperglycemia associated with obesity in a new animal model of F344-fa-nidd6 rat. Kotoh J, Sasaki D, Matsumoto K, Maeda A. J Vet Med Sci. 2016 Dec 1;78(11):1683-1691.


29.

Melinjo (Gnetum gnemon) extract intake during lactation stimulates hepatic AMP-activated protein kinase in offspring of excessive fructose-fed pregnant rats. Kataoka S, Mukai Y, Takebayashi M, Kudo M, Acuram UR, Kurasaki M, Sato S. Reprod Biol. 2016 Jun;16(2):165-73


30.

Rice (Oryza sativa japonica) Albumin Suppresses the Elevation of Blood Glucose and Plasma Insulin Levels after Oral Glucose Loading. Ina S, Ninomiya K, Mogi T, Hase A, Ando T, Matsukaze N, Ogihara J, Akao M, Kumagai H, Kumagai H. J Agric Food Chem. 2016 Jun 22;64(24):4882-90.


31.

PPARγ activation alters fatty acid composition in adipose triglyceride, in addition to proliferation of small adipocytes, in insulin resistant high-fat fed rats. Sato D, Oda K, Kusunoki M, Nishina A, Takahashi K, Feng Z, Tsutsumi K, Nakamura T. Eur J Pharmacol. 2016 Feb 15;773:71-7.


32.

Exercise and dietary change ameliorate high fat diet induced obesity and insulin resistance via mTOR signaling pathway. Bae JY, Shin KO, Woo J, Woo SH, Jang KS, Lee YH, Kang S. J Exerc Nutrition Biochem. 2016 Jun;20(2):28-33.


33.

The IGF-1/Akt/S6 Signaling Pathway is Age-Dependently Downregulated in the Chicken Breast Muscle. Takaoki Saneyasu, Mariko Inui, Sayaka Kimura, Yu Yoshimoto, Nami Tsuchii, Haruka Shindo, Kazuhisa Honda, Hiroshi Kamisoyama. The Journal of Poultry Science, Article ID: 0150171


34.

The dipeptidyl peptidase IV inhibitor vildagliptin suppresses development of neuropathy in diabetic rodents: Effects on peripheral sensory nerve function, structure and molecular changes. Tsuboi K, Mizukami H, Inaba W, Baba M, Yagihashi S. J Neurochem. Vol.136, Issue 4, Feb. 2016, p859–870


35.

Characterization of bioactive agents in five types of marketed sprouts and comparison of their antihypertensive, antihyperlipidemic, and antidiabetic effects in fructose-loaded SHRs. Nakamura K, Koyama M, Ishida R, Kitahara T, Nakajima T, Aoyama T. J Food Sci Technol. 2016 Jan;53(1):581-90.


36.

Beneficial effect of D-allose for isolated islet culture prior to islet transplantation. Kashiwagi H, Asano E, Noguchi C, Sui L, Hossain A, Akamoto S, Okano K, Tokuda M, Suzuki Y. J Hepatobiliary Pancreat Sci. 2016 Jan;23(1):37-42.


37.

Characterization of bioactive agents in five types of marketed sprouts and comparison of their antihypertensive, antihyperlipidemic, and antidiabetic effects in fructose-loaded SHRs. Nakamura K, Koyama M, Ishida R, Kitahara T, Nakajima T, Aoyama T. J Food Sci Technol. 2016 Jan;53(1):581-90.


38.

Characterization of the Prediabetic State in a Novel Rat Model of Type 2 Diabetes, the ZFDM Rat. Gheni G, Yokoi N, Beppu M, Yamaguchi T, Hidaka S, Kawabata A, Hoshino Y, Hoshino M, Seino S. J Diabetes Res. 2015:261418.


39.

The dipeptidyl peptidase IV inhibitor vildagliptin suppresses development of neuropathy in diabetic rodents: Effects on peripheral sensory nerve function, structure and molecular changes. Tsuboi K, Mizukami H, Inaba W, Baba M, Yagihashi S. J Neurochem. 2015 Nov 25.


40.

Resistant maltodextrin promotes fasting glucagon-like peptide-1 secretion and production together with glucose tolerance in rats. Hira T, Ikee A, Kishimoto Y, Kanahori S, Hara H. Br J Nutr. Vol.114(1), p34-42, Jul 2015.


41.

Rice protein hydrolysates stimulate GLP-1 secretion, reduce GLP-1 degradation, and lower the glycemic response in rats. Ishikawa Y, Hira T, Inoue D, Harada Y, Hashimoto H, Fujii M, Kadowaki M, Hara H. Food Funct. Jun 2015.


42.

L-Citrulline increases hepatic sensitivity to insulin by reducing the phosphorylation of serine 1101 in insulin receptor substrate-1. Yoshitomi H, Momoo M, Ma X, Huang Y, Suguro S, Yamagishi Y, Gao M. BMC Complement Altern Med. Vol.15:188, Jun 2015.


43.

Black soybean extract reduces fatty acid contents in subcutaneous, but not in visceral adipose triglyceride in high-fat fed rats Sato D, Kusunoki M, Seino N, Nishina A, Feng Z, Tsutsumi K, Nakamura T. International Journal of Food Sciences and Nutrition , Published online: 20 May 2015.


44.

Fasting for 3 days during the suckling-weaning transient period in male rats induces metabolic abnormalities in the liver and is associated with impaired glucose tolerance in adulthood. Ikeda M, Honma K, Mochizuki K, Goda T. Eur J Nutr. May 2015.


45.

Stimulatory effect of insulin on renal proximal tubule sodium transport is preserved in type 2 diabetes with nephropathy. Nakamura M, Satoh N, Suzuki M, Kume H, Homma Y, Seki G, Horita S. Biochem Biophys Res Commun. Vol.461(1), p154-8, May 2015.


46.

Preserved Na/HCO3 cotransporter sensitivity to insulin may promote hypertension in metabolic syndrome. Nakamura M, Yamazaki O, Shirai A, Horita S, Satoh N, Suzuki M, Hamasaki Y, Noiri E, Kume H, Enomoto Y, Homma Y, Seki G. Kidney Int. Vol.87(3), p535-42, Mar 2015.


47.

Dietary protein derived from dried bonito fish improves type-2 diabetes mellitus-induced bone frailty in Goto-Kakizaki rats. Ochiai M, Kuroda T, Gohtani S, Matsuo T. J Food Sci. Vol.80(4), p848-56, Apr 2015.


48.

Ability of natural astaxanthin from shrimp by-products to attenuate liver oxidative stress in diabetic rats. Sila A, Kamoun Z, Ghlissi Z, Makni M, Nasri M, Sahnoun Z, Nedjar-Arroume N, Bougatef A. Pharmacol Rep. Vol.67(2), p310-6. Apr 2015.


49.

The effects of black garlic (Allium satvium) extracts on lipid metabolism in rats fed a high fat diet. Ha AW, Ying T, Kim WK. Nutr Res Pract. 2015 Feb;9(1):30-6.


50.

Resistant maltodextrin promotes fasting glucagon-like peptide-1 secretion and production together with glucose tolerance in rats. Hira T, Ikee A, Kishimoto Y, Kanahori S, Hara H. Br J Nutr. Vol.11:1-9. Feb 2015.


51.

 Effects of sleeve gastrectomy and gastric banding on the hypothalamic feeding center in an obese rat model. Kawasaki T, Ohta M, Kawano Y, Masuda T, Gotoh K, Inomata M, Kitano S. Surg Today. Feb 2015.


52.

Preventive effects of the angiotensin-converting enzyme inhibitor, captopril, on the development of azoxymethane-induced colonic preneoplastic lesions in diabetic and hypertensive rats. Kochi T, Shimizu M, Ohno T, Baba A, Sumi T, Kubota M, Shirakami Y, Tsurumi H, Tanaka T, Moriwaki H. Oncol Lett. Vol.8(1), p223-229. Jul 2014.


53.

Dietary Protein Derived from Dried Bonito Fish Improves Type-2 Diabetes Mellitus-Induced Bone Frailty in Goto-Kakizaki Rats. Ochiai M1, Kuroda T, Gohtani S, Matsuo T. J Food Sci. Feb 2015.


54.

Pancreatic fat accumulation, fibrosis, and acinar cell injury in the Zucker diabetic fatty rat fed a chronic high-fat diet. Matsuda A, Makino N, Tozawa T, Shirahata N, Honda T, Ikeda Y, Sato H, Ito M, Kakizaki Y, Akamatsu M, Ueno Y, Kawata S. Pancreas. Vol.43(5), p735-743. Jul 2014.


55.

Comparison of mechanisms underlying changes in glucose utilization in fasted rats anesthetized with propofol or sevoflurane: Hyperinsulinemia is exaggerated by propofol with concomitant insulin resistance induced by an acute lipid load. Li X, Kitamura T, Kawamura G, Mori Y, Sato K, Araki Y, Sato R, Yamada Y. Biosci Trends.Vol.8(3), p155-162. Jun 2014.


56.

Chronic Administration of Bovine Milk-Derived α-Lactalbumin Improves Glucose Tolerance via Enhancement of Adiponectin in Goto-Kakizaki Rats with Type 2 Diabetes. Yamaguchi M., Takai S. Biological and Pharmaceutical Bulletin, Vol. 37 (2014) No. 3, p.404-408, 2014.


57.

Maternal fructose intake during pregnancy modulates hepatic and hypothalamic AMP-activated protein kinase signaling in gender-specific manner in offspring. Mukai Y., Ozaki H., Serita Y. and Sato S. Clinical and Experimental Pharmacology and Physiology, 2014.


58.

SGLT2 selective inhibitor ipragliflozin reduces body fat mass by increasing fatty acid oxidation in high-fat diet-induced obese rats. Yokono M., Takasu T., Hayashizaki Y., Mitsuoka K., Kihara R., Muramatsu Y., Miyoshi S., Tahara A, Kurosaki E., Li Q., Tomiyama H., Sasamata M., Shibasaki M., Uchiyama Y. European Journal of Pharmacology, Vol.727, p66-74, Mar 2014.


59.

Non-alcoholic steatohepatitis and preneoplastic lesions develop in the liver of obese and hypertensive rats: suppressing effects of EGCG on the development of liver lesions. Kochi T, Shimizu M, Terakura D, Baba A, Ohno T, Kubota M, Shirakami Y, Tsurumi H, Tanaka T, Moriwaki H. Cancer Lett. Vol.342(1), p60-69, Jan 2014.


60.

Novel GPR40 agonist AS2575959 exhibits glucose metabolism improvement and synergistic effect with sitagliptin on insulin and incretin secretion. Tanaka H., Yoshida S., Minoura H., Negoro K., Shimaya A., Shimokawa T., Shibasaki M. Life Sciences, Vol.94(2), p115-121, Jan 2014.


61.

Taurine Alleviates the Progression of Diabetic Nephropathy in Type 2 Diabetic Rat Model. Koh JH., Lee ES., Hyun M., Kim HM., Choi YJ., Lee EY., Yadav D. and Chung CH. International Journal of Endocrinology, Vol.2014 (2014).


62.

 Effects of Sleeve Gastrectomy on Lipid Metabolism in an Obese Diabetic Rat Model. Kawano, Y., Ohta, M., Hirashita, T., Masuda, T., Inomata, M., Kitano. S. Obesity Surgery, Vol.23(12), p1947-1956, Dec 2013.


63.

 Effects of Sleeve Gastrectomy on Lipid Metabolism in an Obese Diabetic Rat Model. Kawano, Y., Ohta, M., Hirashita, T., Masuda, T., Inomata, M., Kitano. S. Obesity Surgery, Vol.23(12), p1947-1956, Dec 2013.


64.

Effects of electrical microstimulation of peripheral sympathetic nervous fascicle on glucose uptake in rats. Sato D., Shinzawa G., Kusunoki M., Matsui T., Sasaki H., Feng Z., Nishina A., Nakamura T. Journal of Artificial Organs, Vol.16(3), p352-358, Sep 2013.


65.

Long-term effect of green tea extract during lactation on AMPK expression in rat offspring exposed to fetal malnutrition. S.Sato, Y.Mukai, M.Hamaya, Y.Sun, M.Kurasaki. Nutrition, Vol.29(9), p1152-1158, Sep 2013.


66.

Effects of Sleeve Gastrectomy on Lipid Metabolism in an Obese Diabetic Rat Model. Y.Kawano, M.Ohta, T.Hirashita, T.Masuda, M.Inomata, S.Kitano. Obesity Surgery, Jul 2013.


67.

Glucose Use in Fasted Rats Under Sevoflurane Anesthesia and Propofol Anesthesia. K.Sato, T.Kitamura, G.Kawamura, Y.Mori, R.Sato, Y.Araki, Y.Yamada. Anesth Analg, Jun 2013.


68.

Oral administration of corn Zein hydrolysate stimulates GLP-1 and GIP secretion and improves glucose tolerance in male normal rats and Goto-Kakizaki rats. N.Higuchi, T.Hira, N.Yamada and H.Hara. Endocrinology, Jun 2013.


69.

Pancreatic stellate cells reduce insulin expression and induce apoptosis in pancreatic β-cells. K.Kikuta, A.Masamune, S.Hamada, T.Takikawa, E.Nakano, T.Shimosegawa. Biochemical and Biophysical Research Communications, Vol.433(3), p292-297, Apr 2013.


70.

Pancreatic stellate cells reduce insulin expression and induce apoptosis in pancreatic β-cells. Kikuta K, Masamune A, Hamada S, Takikawa T, Nakano E, Shimosegawa T. Biochemical and Biophysical Research Communications,Available online 13, Mar 2013


71.

Hypothalamic Brain-Derived Neurotrophic Factor Regulates Glucagon Secretion Mediated by Pancreatic Efferent Nerves. Gotoh K, Masaki T, Chiba S, Ando H, Fujiwara K, Shimasaki T, Mitsutomi K, Katsuragi I, Kakuma T, Sakata T, Yoshimatsu H. Journal of Neuroendocrinology, Vol.25(3), p302-311, Mar 2013.


72.

Effects of electrical microstimulation of peripheral sympathetic nervous fascicle on glucose uptake in rats. Sato D, Shinzawa G, Kusunoki M, Matsui T, Sasaki H, Feng Z, Nishina A, Nakamura T. Journal of Artificial Organs, Mar 2013.


73.

Improvement of erectile function by Korean red ginseng (Panax ginseng) in a male rat model of metabolic syndrome. Kim S-D, Kim Y-J, Huh J-S, Kim S-W and Sohn D-W. Asian Journal of Andrology , Feb 2013.


74.

Quercetin intake during lactation modulates the AMP-activated protein kinase pathway in the livers of adult male rat offspring programmed by maternal protein restriction. Sato S., Mukai Y., Saito T. The Journal of Nutritional Biochemistry, Vol.24(1), p118-123, Jan 2013.


75.

Reduction of reactive oxygen species ameliorates metabolism-secretion coupling in islets of diabetic GK rats by suppressing lactate overproduction. Sasaki M, Fujimoto S, Sato Y, Nishi Y, Mukai E, Yamano G, Sato H, Tahara Y, Ogura K, Nagashima K and Inagaki N. Diabetes, January 24, 2013 , In press.


76.

Derangement of ghrelin secretion after long-term high-fat diet feeding in rats. Sugiishi A, Kimura M, Kamiya R, Ueki S, Yoneya M, Saito Y, Saito H. Hepatology Research, 2013, In press.

 

77.

Proteomic and bioinformatic analysis of membrane proteome in type 2 diabetic mouse liver. Kim G-H, Park E C, Yun S-H, Hong Y, Lee D-G, Shin E-Y, Jung J, Kim Y H, Lee K-B, Jang I-S, Lee Z-W, Chung Y-H, Choi J-S, Cheong C, Kim S, Kim S II. PROTEOMICS, 2013, In press.


78.

A Novel Rat Model of Type 2 Diabetes: The Zucker Fatty Diabetes Mellitus ZFDM Rat. Yokoi N, Hoshino M, Hidaka S, Yoshida E, Beppu M, Hoshikawa R, Sudo K, Kawada A, Takagi S and Seino S. Journal of Diabetes Research, Vol.2013 (2013)


79.

Urinary cystatin C as a biomarker for diabetic nephropathy and its immunohistochemical localization in kidney in Zucker diabetic fatty (ZDF) rats. Togashi Y, Miyamoto Y. Experimental and Toxicologic Pathology,Available online 12 Jul 2012.


80.

Artemisia campestris leaf extract alleviates early diabetic nephropathy in rats by inhibiting protein oxidation and nitric oxide end products. Mediha S, Hamadi F, Nejla S, Yassine C, Mohamed M, Najiba Z. Pathology – Research and Practice, Vol.208(3), p157-162, Mar 2012.


81.

Fenugreek with reduced bitterness prevents diet-induced metabolic disorders in rats. Muraki E, Chiba H, Taketani K, Hoshino S, Tsuge N, Tsunoda N and Kasono K. Lipids in Health and Disease, Vol.11(58), 2012.


82.

Oral Ingestion of Aloe vera Phytosterols Alters Hepatic Gene Expression Profiles and Ameliorates Obesity-Associated Metabolic Disorders in Zucker Diabetic Fatty Rats. E. Misawa., M. Tanaka., K. Nomaguchi., K. Nabeshima., M. Yamada., T. Toida., and K. Iwatsuki. J. Agric. Food Chem., 2012, 60 (11), pp 2799-2806


83.

 Myocardial Infarction-Prone Watanabe Heritable Hyperlipidemic Rabbits with Mesenteric Fat Accumulation Are a Novel Animal Model for Metabolic Syndrome. M. Shiomi., T. Kobayashi., N. Kuniyoshi., S. Yamada., T. Ito. Pathobiology 2012;Vol. 79 No. 6 P329-338


84.

High-fat diet-induced reduction of peroxisome proliferator-activated receptor-γ coactivator-1α messenger RNA levels and oxidative capacity in the soleus muscle of rats with metabolic syndrome. F. Nagatomo., H. Fujino., H. Kondo., I. Takeda., K. Tsuda., A. Ishihara. Nutrition Research, Vol. 32, Issue 2, February 2012, Pages 144-151


85.

The effects of running exercise on oxidative capacity and PGC-1α mRNA levels in the soleus muscle of rats with metabolic syndrome. F. Nagatomo., H. Fujino., H. Kondo., M. Kouzaki., N. Gu., I. Takeda., K. Tsuda., and A. Ishihara. The Journal of Physiological Sciences, Vol. 62, Number 2 (2012), 105-114


86.

A Comparative Study of Gastric Banding and Sleeve Gastrectomy in an Obese Diabetic Rat Model. T. Masuda., M. Ohta., T. Hirashita., Y. Kawano., H. Egucji., K. Yada., Y. Iwashita., S. Kitano. Obesity Surgery, Published online:27 August 2011


87.

Site dependency of fatty acid composition in adipose triacylglycerol in rats and its absence as a result of high-fat feeding. D. Sato., T. Nakamura., K. Tsutsumi., G. Shinzawa., T. Karimata., T. Okawa., Z. Fengc., and M. Kusunoki. Metabolism.Article in Press


88.

Dietary fructo-oligosaccharides improve insulin sensitivity along with the suppression of adipocytokine secretion from mesenteric fat cells in rats. A. Shinoki., and H. Hara. British Journal of Nutrition.Published online :02 June 2011.


89.

Food restriction improves glucose and lipid metabolism through Sirt1 expression: A study using a new rat model with obesity and severe hypertension. K. Takemori.,T. Kimura.,N. Shirasaka.,T. Inoue.,K. Masuno., and H. Ito. Life Sciences.Vol.88, Issues 25-26, 1088-1094. 2011


90.

Enhanced Urinary Bladder, Liver and Colon Carcinogenesis in Zucker Diabetic Fatty Rats in a Multiorgan Carcinogenesis Bioassay: Evidence for Mechanisms Involving Activation of PI3K Signaling and Impairment of P53 on Urinary Bladder Carcinogenesis. N. Ishii., M. Wei., A. Kakehashi., K. Doi., S. Yamano., M. Inaba., and H.Wanibuchi. Journal of Toxicologic Pathology .Vol. 24 (2011) , No. 1 pp.25


91.

Maternal low-protein diet suppresses vascular and renal endothelial nitric oxide synthase phosphorylation in rat offspring independent of a postnatal fructose diet. S. Sato.,Y. Mukai., and T. Norikura. Journal of Developmental Origins of Health and Disease (2011), 2: 168-175


92.

Combined Effects of Short-term Calorie Restriction and Exercise on Insulin Action in Normal Rats. H,Y,Jiang.,T,Koike.,P,Li.,Z,H,Wang.,Y,Kawata.,Y,Oshida. Horm Metab Res 2010; 42(13): 950-954


93.

Dietary Hesperidin Exerts Hypoglycemic and Hypolipidemic Effects in Streptozocin-Induce Marginal Type 1 Diabetic Rats. Akiyama,S., Katsumata,S., Suzuki,K., Ishimi,Y.,Wu,J., and Uehara,M.. J Clin Biochem Nutr.January;46(1):87-92.2010


94.

Hypoglycemic and Hypolipidemic Effects of Hesperidin and Cyclodextrin-Clathrated Hesperetin in Goto-Kakizaki Rats with Type 2 Diabetes. Akiyama,S., Katsumata,S., Suzuki,K., Nakayama,Y., Ishimi,Y. and Uehara,M. Bioscience,Biotechnology,and Biochemistry.Vol.73,No.12 pp.2779-2782(2009)

95.

Anti-Diabetic Effects of Pumpkin and Its Components,Trigonelline and Nicotinic Acid,on Goto-Kakizaki Rats. Yoshinari,O.,Sato,H.and Igarashi,K. Bioscience,Biotechnology,and Biochemistry.Vol.73,No5pp.1033-1041,2009


96.

Dietary Phosphatidylinositol Prevents the Development of Nonalcoholic Fatty Liver Disease in Zucker(fa/fa)Rats Shirouchi,B.,Nagao,K.,Inoue,N.,Furuya,K.,Koga,S.,Matsumoto,H. and Yanagita,T. J.Agric.Food Chem.56,2375-2379,2008


97.

Investigation of the anti-obesity action of licorice flavonoid oil in diet-induced obese rats. Kamisoyama,H.,Honda,K.,Tominaga,Y.,Yokota,S.,Hasegawa,S. Bioscience.Biotechnology and Biochemistry 72.(12)3225-3231,2008


98.

Erythrophagocytosis by Liver Macrophages(Kupffer Cells)Promotes Oxidative Stress, Inflammation,and Fibrosis in a Rabbit Model of Steatohepatitis. Otogawa,K.,Kinoshita,K.,Fujii,H.,Sakabe,M.,Shiga,R.,Nakatani,K.,Ikeda,K.,Nakajima,Y.,Ikura,Y.,Ueda,M., Arakawa,T.,Hato,F., and Kawada,N. American Journal of Pathology. 170:967-980, 2007


99.

Age- and sex-related diferences in spontaneous hemorrhage and fibrosis of the pancreatic islets in Sprague-Dawley rats. Imaoka, M., Satoh, H. and Furuhama, K. Toxicologic Pathology 35: 388-394, 2007

100.

Effect of 5-Campestenone (24-methylcholest-5-en-3-one) on Zucker Diabetic Fatty Rats as a Type 2 Diabetes Mellitus Model. R.Konno, Y.,Kaneko, K.,Suzuki, Y.,Matsui. Horm Metab Res ; 37(3): 79-83,2005

101.

Oxidized but not acetylated low-density lipoprotein reduces preproinsulin mRNA expression and secretion of insulin from HIT-T15 cells. Okajima,F.,Kurihara,M.,Ono,C.,Nakajima,Y.,Tanimura,K.,Sugihara,H.,Ttsuguchi,A.,Nakagawa,K., Miyazawa,T.,and Oikawa,S. Biochimica et Biophysica Acta (BBA) – Molecular and Cell Biology of Lipids, Volume 1687, Issues 1-3, pp.173-180, 2005


102.

The role of calcium/calmodulin-dependent protein kinase cascade in glucose upregulation of insulin gene expression. Xiao Yu, Koji Murao, Yoshitaka Sayo, Hitomi Imachi, Wen M. Cao, Shouji Ohtsuka, Michio Niimi, Hiroshi Tokumitsu, Hiroyuki Inuzuka, Norman C.W. Wong, Ryoji Kobayashi, and Toshihiko Ishida. Diabetes, 53: 1475-1481, 2004


103.

PVA hydrogel sheet macroencapsulation for the bioartificial pancreas. Qi M, Gu Y, Sakata N, Kim D, Shirouzu Y, Yamamoto C, Hiura A, Sumi S, Inoue K. Biomaterials. 25: 5885-5892, 2004


104.

Alterations in vascular endothelial function in the aorta and mesenteric artery in type II diabetic rats. Takayuki Matsumoto, Kentaro Wakabayashi, Tsuneo Kobayashi, and Katsuo Kamata

Can. J. Physiol. Pharmacol. 82(3): 175-182, 2004


105.

Effect of eicosapentaenoic acid ethyl ester v. oleic acid-rich safflower oil on insulin resistance in type 2 diabetic model rats with hypertriacylglycerolaemia. Asako Minami, Noriko Ishimura, Sadaichi Sakamoto, Eiko Takishita, Kazuaki Mawatari, Kazuko Okada and Yutaka Nakaya. British J Nutrition 87, 157-162, 2002.


106.

Evaluation of Insulin Secretion of Isolated Rat Islets Cultured in Extracellular Matrix. Nagata N.; Gu Y.; Hori H.; Balamurugan A.N.; Touma M.; Kawakami Y.; Wang W.; Baba T.T.; Satake A.; Nozawa M.; Tabata Y.; Inoue K. Cell Transplantation, 10, 447-451, 2001


107.

Lactoferrin ameliorates corticosterone-related acute stress and hyperglycemia in rats. Maekawa Y, Sugiyama A, Takeuchi T. J Vet Med Sci. 2017 Feb 28;79(2):412-417.


产品列表

产品编号 产品名称 产品规格 产品等级 备注
631-01479 (AKRIN-010T) LBIS® Rat Insulin ELISA Kit(T-type)
LBIS® 大鼠胰岛素 ELISA试剂盒(T型) 
96 tests

免责声明

1. 本公司密切关注本网站发布的内容,但不保证发布内容的准确性、完整性、可靠性和最新性等。

2. 本公司不保证使用本网站期间不会出现故障或计算机病毒污染的风险。

3. 无论何种原因,使用本网站时给用户或第三方造成的任何不利或损害,本公司概不负责。此外,对于用户与其他用户或第三方之间因本网站发生的任何交易、通讯

3. 纠纷,本公司概不负责。

4. 本网站可提供的所有产品和服务均不得用于人体或动物的临床诊断或治疗,仅可用于科研等非医疗目的。如任何用户将本网站提供的产品和服务用临床诊断或治

4. 疗,以及他特定的用途或行为,本公司概不保证其安全性和有效性,并且不负任何相关的法律责任。

LBIS® 大鼠胰岛素 ELISA 试剂盒(H 型) LBIS® Insulin-Rat (H type)

产品中心 > 生命科学 > 疾病研究 > 代谢&糖尿病&肥胖症

LBIS® 大鼠胰岛素 ELISA 试剂盒(H 型)
LBIS® Insulin-Rat (H type)

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

LBIS® Insulin-Rat (H type)LBIS® 大鼠胰岛素 ELISA 试剂盒(H 型)                              LBIS® Insulin-Rat (H type)

LBIS® 大鼠胰岛素 ELISA 试剂盒(H 型)

  胰岛素是由胰脏内的胰岛β细胞分泌,分子量约 5800,等电点在 5.4 左右的一种蛋白质激素。

  A6-A11、A7-B7、A20-B-19 之间形成二硫键,在酸性溶液或者不含Zn离子的中性水溶液中形成二聚体,在含锌离子的中性溶液中,则形成含2个 Zn 离子的六聚体。

  肝脏、肌肉、脂肪组织是主要的靶组织,分别有以下的作用。

肝脏:促进糖原、蛋白质、脂肪酸合成、促进糖类的摄取和利用、抑制糖异生。

肌肉:糖类、氨基酸、K细胞膜通透性增大、促进糖原、蛋白质的合成、抑制蛋白质分解。

脂肪组织:葡萄糖细胞膜通透性增大、促进脂肪酸的合成。

  胰岛素是细胞内的合成单链胰岛素原通过二硫键结合一起形成的。在酶分解作用下被激活,C肽和胰岛素分离。

◆特点

 

● 有色缓冲液(蓝色)、容易确认分装后的孔

● 短时间测定(总的反应时间:3小时)

● 微量样品(标准操作:10 μL)可测

● 使用对环境无害的防腐剂

● 全部试剂均为液体,可直接使用

● 精密的测定精度和高再现性

● 操作简便,不需要特别的预处理

 

 

◆构成

 

组成

状态

容量

(A)   抗体固相化 96 孔板

洗净后使用

96   wells(8×12)/1 块

(B)   胰岛素标准溶液(大鼠)(200 ng/mL

稀释后使用

300 μL/1 瓶

(C)   缓冲液(蓝色)

即用

60 mL/1 瓶

(D)  生物素结合抗胰岛素抗体

稀释后使用

200 μL/1 瓶

(E)   过氧化物・抗生物素蛋白结合物

稀释后使用

200 μL/1 瓶

(F)   显色液(TMB)

即用

12 mL/1 瓶

(H)  反应终止液(1M   H2SO4)※小心轻放

即用

12 mL/1 瓶

( I ) 浓缩洗净液(10×)

稀释后使用

100 mL/1 瓶

封板膜

3 张

使用说明书

1 份

◆样品信息

大鼠的血清•血浆•培养液

10 μL/well(标准操作)

※血浆采血建议使用肝素处理血液



◆测量范围

0.5~100 ng/mL(标准曲线范围)

◆Validation data

精度测试(组内变异)

 

样品

A

B

C

1

2.73

12.9

86.7

2

2.78

12.6

86.2

3

2.78

12.8

85.6

4

2.78

12.6

85.2

5

2.73

12.6

85.9

mean

2.76

12.7

85.9

SD

0.025

0.147

0.575

CV(%)

0.9

1.2

0.7

单位:ng/mL

 


重复性测试(组间变异)

 

测量日/样品

D

E

F

第0天

3.34

25.5

70.3

第1天

3.28

25.7

70.3

第2天

3.15

25.2

71.6

mean

3.26

25.5

70.7

SD

0.097

0.280

0.765

CV(%)

3.0

1.1

1.1

单位:ng/mL n=2

 

加标回收测试

 

样品G

添加量

实测值

回收量

回收率(%)

0.00

31.3

20.0

51.2

19.9

99.5

40.0

73.1

41.8

105

60.0

94.3

63.0

105

单位:ng/mL n=2


样品H

添加量

实测值

回收量

回收率(%)

0.00

1.36

1.21

2.58

1.22

101

2.46

3.75

2.39

97.2

3.46

4.64

3.28

94.8

单位:ng/mL n=2

 

稀释直线性测试

 

用稀释缓冲液分3次连续稀释2个血清样品的测量结果,直线回归方程的R2在0.9966~0.9995之间。

参考文献


1.

Duodenal-jejunal bypass improves diabetes and liver steatosis via enhanced glucagon-like peptide-1 elicited by bile acids. Kashihara H, Shimada M, Kurita N, Sato H, Yoshikawa K, Higashijima J, Chikakiyo M, Nishi M, Takasu C. J Gastroenterol Hepatol. Vol.30(2), p308-15, Feb 2015.


2.

Improving Effects of Narazuke Lees on Fatty Liver of Rats Induced by High-Fat and High-Cholesterol Diets. Nakasa T, Yamagami S, Tanaka T, Tanaka H, Hariu H, Okinaka O. Food Science and Technology Research, Vol.20 (2014), No. 4, p849-857.


3.

Duodenal-jejunal bypass improves diabetes and liver steatosis via enhanced glucagon-like peptide-1 elicited by bile acids. Kashihara H, Shimada M, Kurita N, Sato H, Yoshikawa K, Higashijima J, Chikakiyo M, Nishi M, Takasu C. J Gastroenterol Hepatol. Aug 2014.


4.

Effect of diets with different fat contents on the development of diabetes in female Zucker diabetic fatty rat with leptin mutation. Kohlerova, Renata; Sznapkova, Martina; Slavkovsky, Rastislav; Jiroutova, Alena. Acta Veterinaria Brno, Vol.82(3), p289-296, 2013.


5.

Regulation of oxidative stress and inflammation by hepatic adiponectin receptor 2 in an animal model of nonalcoholic steatohepatitis. Matsunami,T.,Sato,Y.,Ariga,S.,Sato,T.,Kashimura,H.,Hasegawa,Y.,Yukawa, M. Int J Clin Exp Pathol. Vol.3(5), p472-481, 2010.



产品列表

产品编号 产品名称 产品规格 产品等级 备注
637-10629 (AKRIN-010H)LBIS® Rat Insulin ELISA Kit(H-type)
LBIS® 大鼠胰岛素 ELISA试剂盒(H型) 
96 tests

免责声明

1. 本公司密切关注本网站发布的内容,但不保证发布内容的准确性、完整性、可靠性和最新性等。

2. 本公司不保证使用本网站期间不会出现故障或计算机病毒污染的风险。

3. 无论何种原因,使用本网站时给用户或第三方造成的任何不利或损害,本公司概不负责。此外,对于用户与其他用户或第三方之间因本网站发生的任何交易、通讯

3. 纠纷,本公司概不负责。

4. 本网站可提供的所有产品和服务均不得用于人体或动物的临床诊断或治疗,仅可用于科研等非医疗目的。如任何用户将本网站提供的产品和服务用临床诊断或治

4. 疗,以及他特定的用途或行为,本公司概不保证其安全性和有效性,并且不负任何相关的法律责任。

LBIS® 大鼠胰岛素 ELISA 试剂盒(RTU) LBIS® Rat Insulin ELISA KIT(RTU)

产品中心 > 生命科学 > 疾病研究 > 代谢&糖尿病&肥胖症

LBIS® 大鼠胰岛素 ELISA 试剂盒(RTU)
LBIS® Rat Insulin ELISA KIT(RTU)

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

LBIS® Rat Insulin ELISA KIT(RTU)LBIS® 大鼠胰岛素 ELISA 试剂盒(RTU)                              LBIS® Rat Insulin ELISA KIT(RTU)

LBIS® 大鼠胰岛素 ELISA试剂盒(RTU)

  胰岛素是由胰脏内的胰岛β细胞分泌,分子量约 5800,等电点在 5.4 左右的一种蛋白质激素。

  A6-A11、A7-B7、A20-B-19 之间形成二硫键,在酸性溶液或者不含 Zn 离子的中性水溶液中形成二聚体,在含锌离子的中性溶液中,则形成含2个 Zn 离子的六聚体。

肝脏、肌肉、脂肪组织是主要的靶组织,分别有以下的作用。

肝脏:促进糖原、蛋白质、脂肪酸合成、促进糖类的摄取和利用、抑制糖异生。

肌肉:糖类、氨基酸、K细胞膜通透性增大、促进糖原、蛋白质的合成、抑制蛋白质分解。

脂肪组织:葡萄糖细胞膜通透性增大、促进脂肪酸的合成。

胰岛素是细胞内的合成单链胰岛素原后通过二硫键结合一起形成的。在酶分解作用下被激活,C肽和胰岛素分离。

◆特点

 

• 测量范围广(100~12,000 pg/mL)

• 短时间测定(总的反应时间:两小时五十分钟)

• 微量样品(标准操作:10 μL)可测

• 使用对环境无害的防腐剂

• 全部试剂均为液体,可直接使用

• 精密的测定精度和高再现性

• 有效期限为 12 个月

◆构成


组成

状态

容量

(A)抗体固相化 96 孔板

洗净后使用

96 wells(8×12)/1 块

(B) 胰岛素标准液(大鼠)

①12,000 ②4,800 ③2,000 ④800 ⑤300 ⑥100(pg/ml)

稀释后使用

各100 μL/1 瓶

(C) 缓冲液

即用

60 mL/1 瓶

(D) 生物素结合抗胰岛素抗体

稀释后使用

12 μL/1 瓶

(E) 过氧化物・抗生物素蛋白结合物

稀释后使用

12 μL/1 瓶

(F) 显色液(TMB)

即用

12 mL/1 瓶

(H) 反应终止液(1M H2SO4)※小心轻放

即用

12 mL/1 瓶

( I ) 浓缩洗净液(10×)

稀释后使用

100 mL/1 瓶

封板膜

3 张

使用说明书

1 份

◆样品信息

大鼠的血清•血浆•培养液

10 μL/well(标准操作)

※血浆采血建议使用肝素处理血液

◆测量范围

100~12,000 pg/mL(标准曲线范围)

◆Validation data

精度测试(组内变异)

样品

A

B

C

1

798

1233

2520

2

782

1309

2601

3

783

1298

2611

4

779

1234

2598

5

788

1255

2623

6

799

1264

2642

mean

788

1266

2599

SD

8.52

32.0

42.0

CV(%)

1.1

2.5

1.6

单位:pg/mL

重复性测试(组间变异)

测量日/样品

D

E

F

第0天

516

1034

2007

第1日

514

1021

2031

第2日

510

1037

2038

第3日

528

1042

2028

mean

517

1034

2026

SD

7.58

8.9

13.3

CV(%)

1.5

0.86

0.66

单位:pg/mL n=3

加标回收测试

样品G

添加量

实测值

回收量

回收率(%)

0.00

514

150

657

143

95.3

300

803

289

96.3

600

1113

599

99.8

1200

1729

1215

101

单位:pg/mL n=3

 

样品H

添加量

实测值

回收量

回收率(%)

0.00

1223

500

1721

498

99.6

1500

2764

1541

103

3000

4161

2938

97.9

4500

5620

4397

97.7

单位:pg/mL n=3

稀释直线性测试

 

用稀释缓冲液分4次连续稀释2个血清样品的测量结果,直线回归方程的 R在 0.998~0.999 之间。



产品列表

产品编号 产品名称 产品规格 产品等级 备注
636-24141 (AKRIN-010RU)LBIS Rat Insulin ELISA KIT(RTU) 96 tests

免责声明

1. 本公司密切关注本网站发布的内容,但不保证发布内容的准确性、完整性、可靠性和最新性等。

2. 本公司不保证使用本网站期间不会出现故障或计算机病毒污染的风险。

3. 无论何种原因,使用本网站时给用户或第三方造成的任何不利或损害,本公司概不负责。此外,对于用户与其他用户或第三方之间因本网站发生的任何交易、通讯

3. 纠纷,本公司概不负责。

4. 本网站可提供的所有产品和服务均不得用于人体或动物的临床诊断或治疗,仅可用于科研等非医疗目的。如任何用户将本网站提供的产品和服务用临床诊断或治

4. 疗,以及他特定的用途或行为,本公司概不保证其安全性和有效性,并且不负任何相关的法律责任。

LBIS® 小鼠胰岛素 ELISA 试剂盒(H 型) LBIS® Insulin-Mouse (H type)

产品中心 > 生命科学 > 疾病研究 > 代谢&糖尿病&肥胖症

LBIS® 小鼠胰岛素 ELISA 试剂盒(H 型)
LBIS® Insulin-Mouse (H type)

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

LBIS® Insulin-Mouse (H type)LBIS® 小鼠胰岛素 ELISA 试剂盒(H 型)                              LBIS® Insulin-Mouse (H type)

LBIS® 小鼠胰岛素 ELISA 试剂盒(H 型)

  胰岛素是由胰脏内的胰岛β细胞分泌,分子量约 5800,等电点在 5.4 左右的一种蛋白质激素。

  A6-A11、A7-B7、A20-B-19 之间形成二硫键,在酸性溶液或者不含 Zn 离子的中性水溶液中形成二聚体,在含锌离子的中性溶液中,则形成含2个 Zn 离子的六聚体。


肝脏、肌肉、脂肪组织是主要的靶组织,分别有以下的作用。

肝脏:促进糖原、蛋白质、脂肪酸合成、促进糖类的摄取和利用、抑制糖异生。

肌肉:糖类、氨基酸、K细胞膜通透性增大、促进糖原、蛋白质的合成、抑制蛋白质分解。

脂肪组织:葡萄糖细胞膜通透性增大、促进脂肪酸的合成。

胰岛素是细胞内的合成单链胰岛素原通过二硫键结合一起形成的。在酶分解作用下被激活,C肽和胰岛素分离。

◆特点

● 有色缓冲液(蓝色)、容易确认分装后的孔

● 短时间测定(总的反应时间:3小时)

● 微量样品(标准操作:10 μL)可测

● 使用对环境无害的防腐剂

● 全部试剂均为液体,可直接使用

● 精密的测定精度和高再现性

● 操作简便,不需要特别的预处理

◆构成

组成部分

状态

容量

(A) 抗体固相化 96 孔板

洗净后使用

96 wells(8×12)/1 块

(B) 胰岛素标准溶液(小鼠)(200 ng/mL

稀释后使用

300 μL/1 瓶

(C) 缓冲液(蓝色)

即用

60 mL/1 瓶

(D) 生物素结合抗胰岛素抗体

稀释后使用

200 μL/1 瓶

(E) 过氧化物・抗生物素蛋白结合物

稀释后使用

200 μL/1 瓶

(F) 显色液(TMB)

即用

12 mL/1 瓶

(H) 反应终止液(1M H2SO4)※小心轻放

即用

12 mL/1 瓶

( I ) 浓缩洗净液(10×)

稀释后使用

100 mL/1 瓶

封板膜

3 张

使用说明书

1 份

◆样品信息

小鼠的血清、血浆、培养液

10 μL/well(标准操作)

※血浆采血建议使用肝素处理血液

 


◆测定范围


0.5~100 ng/mL(标准曲线范围)


◆Validation data

精度测试(组内变异)

 

样品

A

B

C

1

0.749

10.6

81.9

2

0.749

10.7

80.9

3

0.749

10.6

82.3

4

0.711

10.8

82.9

5

0.711

10.8

81.9

mean

0.734

10.7

82.0

SD

0.021

0.11

0.72

CV(%)

2.8

1.0

0.88

单位:ng/mL

 

重复性测试(组间变异)

 

测量日/样品

F

G

H

0

5.61

37.3

78.9

1

5.85

37.9

77.9

2

5.65

37.6

78.2

mean

5.70

37.6

78.3

SD

0.126

0.287

0.544

CV(%)

2.2

0.8

0.7

单位:ng/mL  n=2

 

加标回收测试

 

样品D

 

添加量

实测值

回收量

回收率(%)

0

1.10

1.0

2.16

1.06

106

2.5

3.60

2.50

100

5.1

6.06

4.96

97.3

单位:ng/mL  n=2

 

样品E

 

添加量

实测值

回收量

回收率(%)

0

31.5

20

51.5

20.0

100

40

73.1

41.6

104

60

95.1

63.6

106

单位:ng/mL n=2

 

 

稀释直线性测试

 

用稀释缓冲液分4次连续稀释2个血清样品的测量结果,直线回归方程的R20.9997~1.0之间。

参考文献

1.

Does a Treadmill Running Exercise Contribute to Preventing Deterioration of Bone Mineral Density and Bone Quality of the Femur in KK-Ay Mice, a Type 2 Diabetic Animal Model? Takagi S, Yamashita T, Miura T. Calcif Tissue Int. 2017 Aug 4. 


2.

Further characterization of diabetes mellitus and body weight loss in males of the congenic mouse strain DDD. Cg-Ay. Suto J, Satou K. The Journal of Veterinary Medical Science, 2015.


3.

Fat and carbohydrate in western diet contribute differently to hepatic lipid accumulation. Wu W, Tsuchida H, Kato T, Niwa H, Horikawa Y, Takeda J, Iizuka K. Biochem Biophys Res Commun. Vol.461(4), p681-6, Jun 2015.


4.

C-C Chemokine Receptor 2 Inhibitor Ameliorates Hepatic Steatosis by Improving ER Stress and Inflammation in a Type 2 Diabetic Mouse Model. Kim HM, Lee ES, Lee BR, Yadav D, Kim YM, Ko HJ, Park KS, Lee EY, Chung CH. PLoS One. 2015 Mar 27;10(3):e0120711.


5.

Viability and functional assessment of murine pancreatic islets after transportation between Korea and Japan. Lee S, Takahashi Y, Lee KM, Mizuno M, Nemeno JG, Takebe T, Lee JI. Transplant Proc. Vol.47(3), p738-41, Apr 2015.


6.

Calorie restriction-mediated restoration of hypothalamic signal transducer and activator of transcription 3 (STAT3) phosphorylation is not effective for lowering the body weight set point in IRS-2 knockout obese mice. Satoko Senda,  Atsushi Inoue,  Arshad Mahmood,  Ryo Suzuki,  Nozomu Kamei,  Naoto Kubota,  Taku Watanabe,  Masashi Aoyama,  Allah Nawaz,  Yoshiaki Ohkuma,  Koichi Tsuneyama,  Yukiko Koshimizu,  Isao Usui,  Kumiko Saeki,  Takashi Kadowaki,  Kazuyuki Tobe. Diabetology International February 2015


7.

Overweight in Mice and Enhanced Adipogenesis In Vitro are Associated with Lack of the Hedgehog Coreceptor Boc. Lee HJ, Jo SB, Romer AI, Lim HJ, Kim MJ, Koo SH, Krauss RS, Kang JS. Diabetes. 2015 Jan 9.


8.

Investigating the suspension culture on aggregation and function of mouse pancreatic β-cellsK.-C.Yang, C.-C.Wu, S.-H.Yang, C.-C.Chiu, S.Sumi, H.-S. Lee. Journal of Biomedical Materials Research Part A, Vol.101A(8), p2273-2282, Aug 2013.


9.

Microenvironment-regulated gene expression, morphology, and in vivo performance of mouse pancreatic β-cells. Chen P-Y., Wu C-C., Lu D-H., Sumi S., Lin F-H., Yange K-C. Process Biochemistry, Vol.48(1), p58-67, Jan 2013.


10.

The anti-ulcer agent, irsogladine, increases insulin secretion by MIN6 cells. T.Matsumoto,K.Sakurai, A.Tanaka, T.Ishibashi, K.Tachibana, K.Ishikawa, K.Yokote. European Journal of Pharmacology, Vol.685(1-3), p213-217, Jun 2012.


11.

Cell coupling regulates Ins1, Pdx-1 and MafA to promote insulin secretion in mouse pancreatic beta cells. K.-C. Yanga., Z. Qi., G. Yanai., Y. Shirouza., D.-H. Lu., H.-S. Lee., S. Sumi. Process Biochemistry, Vol.46(9), p1853-1860, 2011.


12.

Dietary Combination of Fish Oil and Taurine Decreases Fat Accumulation and Ameliorates Blood Glucose Levels in Type 2 Diabetic/Obese KK-Ay Mice. N. Mikami., M. Hosokawa., K. Miyashita. Journal of Food Science, Vol. 77(6), pH114-H120, Jun 2012.


13.

Cell coupling regulates Ins1, Pdx-1 and MafA to promote insulin secretion in mouse pancreatic beta cells. K.C. Yang., Z. Qi., G. Yanai., Y. Shirouza., D.H. Lu., H.S. Lee., and S. Sumi. Process Biochemistry.



产品列表

产品编号 产品名称 产品规格 产品等级 备注
634-10379 (AKRIN-011H)LBIS® Mouse Insulin ELISA Kit(H-type)
LBIS® 小鼠胰岛素 ELISA试剂盒(H型)
96 tests

免责声明

1. 本公司密切关注本网站发布的内容,但不保证发布内容的准确性、完整性、可靠性和最新性等。

2. 本公司不保证使用本网站期间不会出现故障或计算机病毒污染的风险。

3. 无论何种原因,使用本网站时给用户或第三方造成的任何不利或损害,本公司概不负责。此外,对于用户与其他用户或第三方之间因本网站发生的任何交易、通讯

3. 纠纷,本公司概不负责。

4. 本网站可提供的所有产品和服务均不得用于人体或动物的临床诊断或治疗,仅可用于科研等非医疗目的。如任何用户将本网站提供的产品和服务用临床诊断或治

4. 疗,以及他特定的用途或行为,本公司概不保证其安全性和有效性,并且不负任何相关的法律责任。

LBIS® 猪胰岛素 ELISA 试剂盒 LBIS® Insulin-Porcine

产品中心 > 生命科学 > 疾病研究 > 代谢&糖尿病&肥胖症

LBIS® 猪胰岛素 ELISA 试剂盒
LBIS® Insulin-Porcine

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

LBIS® Insulin-PorcineLBIS® 猪胰岛素 ELISA 试剂盒                              LBIS® Insulin-Porcine

LBIS® 猪胰岛素 ELISA 试剂盒

胰岛素是由胰脏内的胰岛β细胞分泌,分子量约 5800,等电点在 5.4 左右的一种蛋白质激素。

A6-A11、A7-B7、A20-B-19 之间形成二硫键,在酸性溶液或者不含 Zn 离子的中性水溶液中形成二聚体,在含锌离子的中性溶液中,则形成含2个 Zn 离子的六聚体。

肝脏、肌肉、脂肪组织是主要的靶组织,分别有以下的作用。

肝脏:促进糖原、蛋白质、脂肪酸合成、促进糖类的摄取和利用、抑制糖异生。

肌肉:糖类、氨基酸、K细胞膜通透性增大、促进糖原、蛋白质的合成、抑制蛋白质分解。

脂肪组织:葡萄糖细胞膜通透性增大、促进脂肪酸的合成。

胰岛素是细胞内的合成单链胰岛素原通过二硫键结合一起形成的。在酶分解作用下被激活,C肽和胰岛素分离。

◆特点

● 短时间测定(总的反应时间:3小时)

● 微量样品(标准操作:10 μL)可测

● 使用对环境无害的防腐剂

● 全部试剂均为液体,可直接使用

● 精密的测定精度和高再现性

● 操作简便,不需要特别的预处理

◆构成

组成

状态

容量

(A)   抗体固相化 96 孔板

洗净后使用

96 wells(8×12)/1 块

(B) 胰岛素标准液(猪)(240 ng/mL)

稀释后使用

25 μL/1 瓶

(C) 缓冲液

即用

60 mL/1 瓶

(D) 生物素结合抗胰岛素抗体

稀释后使用

10 μL/1 瓶

(E) 过氧化物・抗生物素蛋白结合物

稀释后使用

20 μL/1 瓶

(F) 显色液(TMB)

即用

12 mL/1

(H) 反应终止液(1M H2SO4)※小心轻放

即用

12 mL/1

( I ) 浓缩洗净液(10×)

稀释后使用

100 mL/1瓶

封板膜

3 张

使用说明书

1 份

◆样品信息

猪的血清•血浆•培养液

10 μL/well(标准操作)

※血浆采血建议使用肝素处理血液

 

 

◆测定范围

0.188~12 ng/mL(标准曲线范围)

◆Validation data

精度测试(组内变异)

样品

A

B

C

mean

0.991

0.482

0.201

SD

0.0321

0.0175

0.0099

CV(%)

3.2

3.6

4.9

单位:ng/mL,n=5

重复性测试(组间变异)

测量日/样品

D

E

F

mean

1.452

0.901

0.346

SD

0.0562

0.0321

0.0162

CV(%)

3.9

3.6

4.7

3天内 单位:ng/mL,n=2

加标回收测试


样品G

添加量

实测值

回收量

回收率(%)

0.343

0.25

0.576

0.233

93.2

0.5

0.802

0.459

91.7

1

1.295

0.952

95.2

2

2.301

1.958

97.9

单位:ng/mL

样品H

添加量

实测值

回收量

回收率(%)

0.202

0.25

0.437

0.235

93.8

0.5

0.666

0.464

92.8

1

1.201

0.999

99.9

2

2.240

2.038

102

单位:ng/mL


产品列表

产品编号 产品名称 产品规格 产品等级 备注
630-01461 (AKRIN-013T)LBIS® Insulin-Porcine 96 tests

免责声明

1. 本公司密切关注本网站发布的内容,但不保证发布内容的准确性、完整性、可靠性和最新性等。

2. 本公司不保证使用本网站期间不会出现故障或计算机病毒污染的风险。

3. 无论何种原因,使用本网站时给用户或第三方造成的任何不利或损害,本公司概不负责。此外,对于用户与其他用户或第三方之间因本网站发生的任何交易、通讯

3. 纠纷,本公司概不负责。

4. 本网站可提供的所有产品和服务均不得用于人体或动物的临床诊断或治疗,仅可用于科研等非医疗目的。如任何用户将本网站提供的产品和服务用临床诊断或治

4. 疗,以及他特定的用途或行为,本公司概不保证其安全性和有效性,并且不负任何相关的法律责任。

LBIS® 血蓝蛋白(KLH)(T细胞依赖性抗原) 大鼠免疫球蛋白G(IgG)ELISA试剂盒 LBIS® KLH(TDAR) Rat-IgG ELISA Kit

产品中心 > 生命科学 > 疾病研究 > LBIS® 动物代谢检测试剂盒系列

LBIS® 血蓝蛋白(KLH)(T细胞依赖性抗原)
大鼠免疫球蛋白G(IgG)ELISA试剂盒
LBIS® KLH(TDAR) Rat-IgG ELISA Kit

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

LBIS® 血蓝蛋白(KLH)(T细胞依赖性抗原)  大鼠免疫球蛋白G(IgG)ELISA试剂盒                              LBIS® KLH(TDAR) Rat-IgG ELISA Kit血蓝蛋白(KLH)(T细胞依赖性抗原)

大鼠免疫球蛋白G(IgG)ELISA试剂盒

 


  药品的免疫毒性实验相关方针ICH S8中推荐在无特定免疫毒性标靶情况下进行的T细胞依赖性抗体生产实验(TDAR、T cell Dependent Antibody Reaction)。TDAR被称为T细胞依赖性抗原。例如:通过KLH(Keyhole limpet hemocyanin)的投放对一次抗原刺激而生产IgM性状抗体。接下来进行二次抗原刺激后通过类别转换作用可观察到产生IgG性状抗体。由于本试剂盒可简便测定大鼠血液中IgM性状的抗KLH浓度,所以十分符合上文所述的目的。可与大鼠抗KLH-IgG检测试剂盒配套使用。


◆特点

LBIS® 血蓝蛋白(KLH)(T细胞依赖性抗原)  大鼠免疫球蛋白G(IgG)ELISA试剂盒                              LBIS® KLH(TDAR) Rat-IgG ELISA Kit


● 测定时间短(总反应时间:2小时20分钟)

● 微量样本即可测定。

● 使用无害的防腐剂。

● 全部试剂为溶液即用类型。

● 高测定精度和高重复性。

 

试剂盒组成


组成品

状态

包装

KLH包被96孔板

清洗后使用

96 wells(8×12)/1个

抗KLH大鼠IgG标准溶液(300 ng/mL)

稀释后使用

200 μL/1瓶

缓冲液

直接使用

100 mL/1瓶

HRP结合抗大鼠IgG抗体

稀释后使用

100 μL/1瓶

显色液(TMB)

直接使用

12 mL/1瓶

终止液(1M H2SO4

※小心轻放

直接使用

12 mL/1瓶

浓缩清洗液(10×)

稀释后使用

100 mL/1瓶

孔板密封膜

3个

产品说明书

1本

 


◆物种交叉性


3000 ng/mL时数据—:无交叉性


动物种类

对象物质

反应性及反应率(%)

大鼠

IgG

100

IgM

IgA

IgE

小鼠

IgG

IgM

IgE

 


◆样本信息


● 大鼠血清·血浆

● 50 μL/well(稀释样本)

※ 用附带的缓冲液将样品稀释至标准曲线范围内。

※ 为了避免非特异反应发生,请将样本稀释500倍以上。

 


◆测定范围


0.47~30 ng/mL(标准曲线范围)

 


实验数据


精度测试(组内变异)


样本

A

B

1

11.2

3.93

2

11.0

3.74

3

11.3

3.83

4

11.1

3.70

5

11.5

3.99

Mean

11.2

3.84

SD

0.190

0.121

CV(%)

1.7

3.2

单位:ng/mL



重复性测试(组间变异)


测定日/样本

E

F

G

0天

15.3

3.84

0.969

1天

15.3

3.84

0.954

2天

15.4

3.83

0.958

3天

15.2

3.82

0.976

Mean

15.3

3.83

0.965

SD

0.0615

0.0067

0.0102

CV(%)

0.40

0.18

1.1

单位:ng/mL,n=4



加标回收测试


样本C


添加量

实测值

回收量

回收率(%)

0.00

1.18

0.466

1.65

0.470

101

1.40

2.53

1.35

96.4

2.33

3.48

2.30

98.7

单位:ng/mL,n=2


样本D


添加量

实测值

回收量

回收率(%)

0.00

12.5

4.90

17.2

4.70

95.9

10.7

23.1

10.6

99.1

15.4

27.2

14.7

95.5

单位:ng/mL,n=2



稀释直线性测试


2个血清样本连续用稀释缓冲液稀释3个梯度测定结果,直线回归值R2=0.9992~0.9998


产品列表

产品编号 产品名称 产品规格 产品等级 备注
636-13759 LBIS® KLH(TDAR) Rat-IgG ELISA Kit 
血蓝蛋白(KLH)(T细胞依赖性抗原)大鼠免疫球蛋白G(IgG) ELISA试剂盒
96 tests

免责声明

1. 本公司密切关注本网站发布的内容,但不保证发布内容的准确性、完整性、可靠性和最新性等。

2. 本公司不保证使用本网站期间不会出现故障或计算机病毒污染的风险。

3. 无论何种原因,使用本网站时给用户或第三方造成的任何不利或损害,本公司概不负责。此外,对于用户与其他用户或第三方之间因本网站发生的任何交易、通讯

3. 纠纷,本公司概不负责。

4. 本网站可提供的所有产品和服务均不得用于人体或动物的临床诊断或治疗,仅可用于科研等非医疗目的。如任何用户将本网站提供的产品和服务用临床诊断或治

4. 疗,以及他特定的用途或行为,本公司概不保证其安全性和有效性,并且不负任何相关的法律责任。

LBIS Human IL-7 ELISA Kit 短时间/微量样品/高灵敏度检测人血清(血浆)中的IL-7

产品中心 > 生命科学 > 疾病研究 > 感染&自身免疫疾病

LBIS Human IL-7 ELISA Kit
短时间/微量样品/高灵敏度检测人血清(血浆)中的IL-7

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

LBIS Human IL-7 ELISA KitLBIS Human IL-7 ELISA Kit                              短时间/微量样品/高灵敏度检测人血清(血浆)中的IL-7

短时间/微量样品/高灵敏度检测人血清(血浆)中的IL-7

FUJIFILM Wako Shibayagi Corporation的LBIS Cytokine ELISA Kit系列推出了新产品Human IL-7。对于现有产品因缺乏灵敏度而无法检测的正常样品和低浓度样品,新产品可以高灵敏度且重复性良好地进行检测。

IL-7主要由骨髓、胸腺、淋巴器官或组织的基质细胞等非造血细胞产生,是诱导干细胞分化为免疫细胞的细胞因子。成熟体由152个氨基酸组成。CD4+、CD8+两种细胞的增殖和发生、促进抗病毒活性,还与类风湿关节炎、慢性结肠炎的产生以及与嗜酸性粒细胞活性引起的哮喘有关。另外,作为抗癌药和免疫检查点相关药物联合治疗中的助推因子,高灵敏度IL-7的检测,在NK细胞、B细胞和T细胞的增强作用物质的探索和研究中也备受期待。

特点


● 不适用于卡塔赫纳生物安全议定书(不含杆状病毒)

● 微量样品的检测

● 可短时间检测(总反应时间:2 h 50 min)

● 使用环保防腐剂

● 准确性和重复性高



◆性能

 样品

 人血清/血浆(肝素/EDTA)

 校准曲线范围

 1.50~236 pg/mL

 Assay内差异(5次检测,2个样品)

 平均C.V.   值:不足15%

 Assay间差异(3次检测,3个样品,4天)

 平均C.V.   值:不足15%

◆数据


■ 人样品检测(例)

Sample No.

检测值

Sample No.

检测值

1

3.9

7

3.78

2

2.44

8

11

3

7.59

9

40

4

6.21

10

10

5

9.36

11

3.5

6

5.35

人正常血清,2重检测,单位:pg/mL

试剂盒组成


● 抗体固定96孔板···········································96 wells(8×12)×1张

● 人IL-7标准品······················································································1瓶

● 缓冲液···················································································60 mL×1瓶

● 生物素结合抗IL-7抗体······································································1瓶

● 过氧化物酶·亲和素结合物···············································150 μL×1瓶

● 显色液(TMB)··································································12 mL×1瓶

● 反应终止液(1 mol/L H2SO4)·····································12 mL×1瓶

● 浓缩清洗液(10×)···························································100 mL×1瓶

◆产品列表

产品编号

厂家编号

产品名称

包装

637-50441

AKH-IL7

LBIS Human IL-7 ELISA Kit
人IL-7 ELISA试剂盒

96 tests

相关产品

产品编号

厂家编号

产品名称

标准曲线范围(pg/mL)

包装

635-42311

AKH-IL6

LBIS Human IL-6 ELISA Kit
人IL-6 ELISA试剂盒

1.16~500

96 tests

632-42321

AKH-IL8

LBIS Human IL-8 (CXCL8)ELISA Kit
人IL-8(CXCL8)ELISA试剂盒

0.686~500

96 tests

639-42331

AKHTNFA

LBIS Human TNF-α ELISA Kit
人 TNF-α ELISA试剂盒

2.05~500

96 tests

631-40831

AKHVEGF

LBIS Human VEGF ELISA Kit
人VEGF ELISA试剂盒

1.10~800

96 tests

631-47891

AKHIFNG

LBIS Human IFN-γ ELISA Kit
人IFN-γELISA试剂盒

0.768~75.0

96 tests


 


免责声明

1. 本公司密切关注本网站发布的内容,但不保证发布内容的准确性、完整性、可靠性和最新性等。

2. 本公司不保证使用本网站期间不会出现故障或计算机病毒污染的风险。

3. 无论何种原因,使用本网站时给用户或第三方造成的任何不利或损害,本公司概不负责。此外,对于用户与其他用户或第三方之间因本网站发生的任何交易、通讯

3. 纠纷,本公司概不负责。

4. 本网站可提供的所有产品和服务均不得用于人体或动物的临床诊断或治疗,仅可用于科研等非医疗目的。如任何用户将本网站提供的产品和服务用临床诊断或治

4. 疗,以及他特定的用途或行为,本公司概不保证其安全性和有效性,并且不负任何相关的法律责任。