LBIS® 血蓝蛋白(KLH)(T细胞依赖性抗原) 大鼠免疫球蛋白G(IgG)ELISA试剂盒 LBIS® KLH(TDAR) Rat-IgG ELISA Kit

产品中心 > 生命科学 > 疾病研究 > LBIS® 动物代谢检测试剂盒系列

LBIS® 血蓝蛋白(KLH)(T细胞依赖性抗原)
大鼠免疫球蛋白G(IgG)ELISA试剂盒
LBIS® KLH(TDAR) Rat-IgG ELISA Kit

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

LBIS® 血蓝蛋白(KLH)(T细胞依赖性抗原)  大鼠免疫球蛋白G(IgG)ELISA试剂盒                              LBIS® KLH(TDAR) Rat-IgG ELISA Kit血蓝蛋白(KLH)(T细胞依赖性抗原)

大鼠免疫球蛋白G(IgG)ELISA试剂盒

 


  药品的免疫毒性实验相关方针ICH S8中推荐在无特定免疫毒性标靶情况下进行的T细胞依赖性抗体生产实验(TDAR、T cell Dependent Antibody Reaction)。TDAR被称为T细胞依赖性抗原。例如:通过KLH(Keyhole limpet hemocyanin)的投放对一次抗原刺激而生产IgM性状抗体。接下来进行二次抗原刺激后通过类别转换作用可观察到产生IgG性状抗体。由于本试剂盒可简便测定大鼠血液中IgM性状的抗KLH浓度,所以十分符合上文所述的目的。可与大鼠抗KLH-IgG检测试剂盒配套使用。


◆特点

LBIS® 血蓝蛋白(KLH)(T细胞依赖性抗原)  大鼠免疫球蛋白G(IgG)ELISA试剂盒                              LBIS® KLH(TDAR) Rat-IgG ELISA Kit


● 测定时间短(总反应时间:2小时20分钟)

● 微量样本即可测定。

● 使用无害的防腐剂。

● 全部试剂为溶液即用类型。

● 高测定精度和高重复性。

 

试剂盒组成


组成品

状态

包装

KLH包被96孔板

清洗后使用

96 wells(8×12)/1个

抗KLH大鼠IgG标准溶液(300 ng/mL)

稀释后使用

200 μL/1瓶

缓冲液

直接使用

100 mL/1瓶

HRP结合抗大鼠IgG抗体

稀释后使用

100 μL/1瓶

显色液(TMB)

直接使用

12 mL/1瓶

终止液(1M H2SO4

※小心轻放

直接使用

12 mL/1瓶

浓缩清洗液(10×)

稀释后使用

100 mL/1瓶

孔板密封膜

3个

产品说明书

1本

 


◆物种交叉性


3000 ng/mL时数据—:无交叉性


动物种类

对象物质

反应性及反应率(%)

大鼠

IgG

100

IgM

IgA

IgE

小鼠

IgG

IgM

IgE

 


◆样本信息


● 大鼠血清·血浆

● 50 μL/well(稀释样本)

※ 用附带的缓冲液将样品稀释至标准曲线范围内。

※ 为了避免非特异反应发生,请将样本稀释500倍以上。

 


◆测定范围


0.47~30 ng/mL(标准曲线范围)

 


实验数据


精度测试(组内变异)


样本

A

B

1

11.2

3.93

2

11.0

3.74

3

11.3

3.83

4

11.1

3.70

5

11.5

3.99

Mean

11.2

3.84

SD

0.190

0.121

CV(%)

1.7

3.2

单位:ng/mL



重复性测试(组间变异)


测定日/样本

E

F

G

0天

15.3

3.84

0.969

1天

15.3

3.84

0.954

2天

15.4

3.83

0.958

3天

15.2

3.82

0.976

Mean

15.3

3.83

0.965

SD

0.0615

0.0067

0.0102

CV(%)

0.40

0.18

1.1

单位:ng/mL,n=4



加标回收测试


样本C


添加量

实测值

回收量

回收率(%)

0.00

1.18

0.466

1.65

0.470

101

1.40

2.53

1.35

96.4

2.33

3.48

2.30

98.7

单位:ng/mL,n=2


样本D


添加量

实测值

回收量

回收率(%)

0.00

12.5

4.90

17.2

4.70

95.9

10.7

23.1

10.6

99.1

15.4

27.2

14.7

95.5

单位:ng/mL,n=2



稀释直线性测试


2个血清样本连续用稀释缓冲液稀释3个梯度测定结果,直线回归值R2=0.9992~0.9998


产品列表

产品编号 产品名称 产品规格 产品等级 备注
636-13759 LBIS® KLH(TDAR) Rat-IgG ELISA Kit 
血蓝蛋白(KLH)(T细胞依赖性抗原)大鼠免疫球蛋白G(IgG) ELISA试剂盒
96 tests

免责声明

1. 本公司密切关注本网站发布的内容,但不保证发布内容的准确性、完整性、可靠性和最新性等。

2. 本公司不保证使用本网站期间不会出现故障或计算机病毒污染的风险。

3. 无论何种原因,使用本网站时给用户或第三方造成的任何不利或损害,本公司概不负责。此外,对于用户与其他用户或第三方之间因本网站发生的任何交易、通讯

3. 纠纷,本公司概不负责。

4. 本网站可提供的所有产品和服务均不得用于人体或动物的临床诊断或治疗,仅可用于科研等非医疗目的。如任何用户将本网站提供的产品和服务用临床诊断或治

4. 疗,以及他特定的用途或行为,本公司概不保证其安全性和有效性,并且不负任何相关的法律责任。

抗 SARS-CoV-2 S-RBD IgG ELISA 试剂盒 Wako 可检测与抗SARS-CoV-2的中和活性高度相关的IgG抗体

产品中心 > 生命科学 > 疾病研究 > 传染性疾病

抗 SARS-CoV-2 S-RBD IgG ELISA 试剂盒 Wako
可检测与抗SARS-CoV-2的中和活性高度相关的IgG抗体

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

可检测与抗SARS-CoV-2的中和活性高度相关的IgG抗体抗 SARS-CoV-2 S-RBD IgG ELISA 试剂盒 Wako                              可检测与抗SARS-CoV-2的中和活性高度相关的IgG抗体

抗 SARS-CoV-2 S-RBD IgG ELISA 试剂盒 Wako

抗 SARS-CoV-2 S-RBD IgG ELISA 试剂盒 Wako                              可检测与抗SARS-CoV-2的中和活性高度相关的IgG抗体

本产品为定量SARS-CoV-2刺突蛋白受体结合域(S-RBD:S-protein Receptor-binding domain)IgG抗体量的ELISA试剂盒。据报告显示,使用本产品测定的IgG抗体量与样品中抗SARS-CoV-2的中和活性之间具有高度相关性1)

病毒中和测试不仅费时费力,还需要生物安全等级3(BSL3)的设施。使用本产品,无需处理SARS-CoV-2,即可检测与样品中的中和活性显示高度相关的抗SARS-CoV-2 S-RBD的IgG抗体量。

抗 SARS-CoV-2 S-RBD IgG ELISA 试剂盒 Wako                              可检测与抗SARS-CoV-2的中和活性高度相关的IgG抗体

使用与本产品相同的ELISA系统,检测SARS-CoV-2患者血液中15种抗S蛋白和N蛋白的抗体,作为过去的感染指标,抗S蛋白抗体的表现优异。另外,进行中和活性测试以研究与中和活性的相关性,结果表明在15种抗体中抗S-RBD的IgG抗体与中和活性相关性最高1)


试剂盒组成

包含反应必需的全部试剂(共11种)。

● SARS-CoV-2 S蛋白固相化孔板 

96 well×1 plate

● 过氧化物酶(POD)标记的抗体溶液

6 mL×1瓶

● 浓缩清洗液(10×)

100 mL×1瓶

● 显色液(TMB溶液)

11 mL×1瓶

● 反应终止液(1N HCL)

11 mL×1瓶

● 样品稀释液(0U/mL) 

100 mL×2瓶

● 抗SARS-CoV-2 IgG标准品-1(62.5U/mL)

500 μL×1瓶

● 抗SARS-CoV-2 IgG标准品-2(125U/mL)

500 μL×1瓶

● 抗SARS-CoV-2 IgG标准品-3(187.5U/mL)

500 μL×1瓶

● 抗SARS-CoV-2 IgG标准品-4(250U/mL)

500 μL×1瓶

● 封板膜

3张

◆检测原理


抗 SARS-CoV-2 S-RBD IgG ELISA 试剂盒 Wako                              可检测与抗SARS-CoV-2的中和活性高度相关的IgG抗体

1. 向SARS-CoV-2 S-RBD重组抗原固相化孔板中添加样品后开始反应

2. 样品中的抗SARS-CoV-2 IgG与孔板上的抗原结合

3. 与POD标记抗人IgG单抗(小鼠)反应

4. 抗原-抗-SARS-CoV-2 IgG-POD-标记抗体的复合物形成

5. 使用吸光度检测设备测定孔中的POD活性(450 nm/620 nm)

※ 孔内的POD活性与抗SARS-CoV-2 IgG量成比例。

◆试剂盒性能

  标准曲线检测范围

  2-250 U/mL(本公司内部单位)

  检测对象

  抗SARS-CoV-2   S 蛋白RBD区域的IgG抗体

  检测目标样品

  人血清、血浆

  所需样品量

  5 μL

  检测时间

  3 h

  检测方法

  显色法

标准曲线示例


抗 SARS-CoV-2 S-RBD IgG ELISA 试剂盒 Wako                              可检测与抗SARS-CoV-2的中和活性高度相关的IgG抗体


【参考文献】


1) Fujigaki, H. et al. : J. Immunol., 206(10), 2393(2021).

※ 本页面产品仅供研究用,研究以外不可使用。


产品列表

产品编号 产品名称 产品规格 产品等级 备注
290-84201 Anti SARS-CoV-2 S-RBD IgG ELISA Kit Wako 96 tests 用 免疫化学用

免责声明

1. 本公司密切关注本网站发布的内容,但不保证发布内容的准确性、完整性、可靠性和最新性等。

2. 本公司不保证使用本网站期间不会出现故障或计算机病毒污染的风险。

3. 无论何种原因,使用本网站时给用户或第三方造成的任何不利或损害,本公司概不负责。此外,对于用户与其他用户或第三方之间因本网站发生的任何交易、通讯

3. 纠纷,本公司概不负责。

4. 本网站可提供的所有产品和服务均不得用于人体或动物的临床诊断或治疗,仅可用于科研等非医疗目的。如任何用户将本网站提供的产品和服务用临床诊断或治

4. 疗,以及他特定的用途或行为,本公司概不保证其安全性和有效性,并且不负任何相关的法律责任。

LBIS® 小鼠卵清蛋白特异性免疫球蛋白G1(OVA-IgG1)ELISA试剂盒 LBIS® OVA-IgG1 Mouse

产品中心 > 生命科学 > 疾病研究 > LBIS® 动物代谢检测试剂盒系列

LBIS® 小鼠卵清蛋白特异性免疫球蛋白G1(OVA-IgG1)ELISA试剂盒
LBIS® OVA-IgG1 Mouse

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

LBIS® 小鼠卵清蛋白特异性免疫球蛋白G1(OVA-IgG1)ELISA试剂盒                              LBIS® OVA-IgG1 MouseLBIS® 小鼠卵清蛋白特异性免疫球蛋白G1(OVA-IgG1)ELISA试剂盒

 


  IgG是血清中免疫球蛋白中含量最高的二次免疫应答主要抗体。占据三分之二IgG的是具有γ1的H链,分子量146 kDa的IgG1。以OVA(卵清蛋白)作为特殊化抗原,通过简化测定抗OVA- IgG1抗体值来阐明小鼠免疫系统作用机理。

  小鼠卵清蛋白特异性免疫球蛋白G1(OVA-IgG1)ELISA试剂盒是仅特异性测定Anit-OVA-IgG1的试剂盒。

 

◆特点

LBIS® 小鼠卵清蛋白特异性免疫球蛋白G1(OVA-IgG1)ELISA试剂盒                              LBIS® OVA-IgG1 Mouse


● 测定时间短(总反应时间:1小时50分钟)

● 微量样本即可测定。

● 使用无害的防腐剂。

● 全部试剂为溶液即用类型。

● 高测定精度和高重复性。

● 操作简便,无特殊前处理。

 



试剂盒组成


组成品

状态

包装

OVA包被96孔板(干燥板)

清洗后使用

96 wells(8×12)/1个

标准溶液(Anti OVA- IgG1:1,200U/mL)(单抗)

稀释后使用

100 μL/1瓶

缓冲液

直接使用

60 mL/1瓶

生物素结合抗小鼠IgG1抗体(单抗)

稀释后使用

200 μL/1瓶

过氧化物酶·抗生素结合物

稀释后使用

200 μL/1瓶

显色液(TMB)

直接使用

12 mL/1瓶

终止液(1M H2SO4

※小心轻放

直接使用

12 mL/1瓶

浓缩清洗液(10×)

稀释后使用

100 mL/1瓶

孔板密封膜

3个

产品说明书

1本

 


样本信息

● 小鼠血清·血浆

● 10 μL/well(稀释样本)

※ 样本必须用附带的缓冲液稀释100倍以上。

 


◆测定范围


1.88~120 mU/mL(标准曲线范围)

(本试剂盒中1 U/mL定义为抗原结合常数(Ka)为6.9×107 M-1的抗体160ng/mL)

 


实验数据


精度测试(组内变异)


样本

A

B

1

105

18.2

2

100

16.9

3

96.2

16.7

4

100

17.4

5

106

17.4

Mean

101

17.3

SD

4.0

0.59

CV(%)

4.0

3.4

单位:mU/mL



重复性测试(组间变异)


测定日/样本

C

D

E

0天

60.1

15.0

3.75

1天

58.5

14.7

3.70

2天

59.9

15.3

3.83

3天

61.4

15.7

3.82

Mean

60.0

15.2

3.77

SD

1.2

0.44

0.06

CV(%)

2.0

2.9

1.6

单位:mU/mL



加标回收测试


样本F


添加量

实测值

回收量

回收率(%)

0.00

8.86

7.29

15.8

6.94

95.2

11.0

19.5

10.6

96.4

14.6

23.0

14.1

96.6

单位:mU/mL,n=3


样本G


添加量

实测值

回收量

回收率(%)

0.00

51.5

26.9

76.8

25.3

97.1

31.4

80.6

29.1

92.5

47.1

100

48.5

103

单位:mU/mL,n=3



稀释直线性测试


2个血清样本连续用稀释缓冲液稀释3个梯度测定结果,直线回归值R2=0.9994~0.9998

参考文献



 1.

Pinocembrin attenuates allergic airway inflammation via inhibition of NF-κB pathway in mice. Gu X, Zhang Q, Du Q, Shen H, Zhu Z. Int Immunopharmacol. 2017 Oct 18;53:90-95.


 2.

A dichloromethane fraction of Triticum aestivum sprouts reduces allergic immune response through inhibiting Th2 differentiation in ovalbumin‑immunized mice. Ki HH, Hwang SW, Lee JH, Kim YH, Kim DK, Lee YM. Mol Med Rep. 2017 Sep;16(3):3535-3541.


 3.

Urban PM2.5 exacerbates allergic inflammation in the murine lung via a TLR2/TLR4/MyD88-signaling pathway. He M, Ichinose T, Yoshida Y, Arashidani K, Yoshida S, Takano H, Sun G, Shibamoto T. Sci Rep. 2017 Sep 8;7(1):11027.


 4.

Activation of group 2 innate lymphoid cells exacerbates and confers corticosteroid resistance to mouse nasal type 2 inflammation. Morikawa T, Fukuoka A, Matsushita K, Yasuda K, Iwasaki N, Akasaki S, Fujieda S, Yoshimoto T. Int Immunol. 2017 May 1;29(5):221-233.


 5.

Aquaporin-3 potentiates allergic airway inflammation in ovalbumin-induced murine asthma. Ikezoe K, Oga T, Honda T, Hara-Chikuma M, Ma X, Tsuruyama T, Uno K, Fuchikami J, Tanizawa K, Handa T, Taguchi Y, Verkman AS, Narumiya S, Mishima M, Chin K. Sci Rep. 2016 May 11;6:25781.


 6.

Exposure to bisphenol A enhanced lung eosinophilia in adult male mice. He M, Ichinose T, Yoshida S, Takano H, Nishikawa M, Shibamoto T, Sun G. Allergy Asthma Clin Immunol. 2016 Apr 14;12:16.


 7.

Differences in allergic inflammatory responses between urban PM2.5 and fine particle derived from desert-dust in murine lungs. He M, Ichinose T, Kobayashi M, Arashidani K, Yoshida S, Nishikawa M, Takano H, Sun G, Shibamoto T. Toxicol Appl Pharmacol. 2016 Apr 15;297:41-55.


 8.

Desert dust induces TLR signaling to trigger Th2-dominant lung allergic inflammation via a MyD88-dependent signaling pathway. He M, Ichinose T, Song Y, Yoshida Y, Bekki K, Arashidani K, Yoshida S, Nishikawa M, Takano H, Shibamoto T, Sun G. Toxicol Appl Pharmacol. 2016 Apr 1;296:61-72.


 9.

Administration of Pigment Epithelium-Derived Factor Inhibits Airway Inflammation and Remodeling in Chronic OVA-Induced Mice via VEGF Suppression. Zha W, Su M, Huang M, Cai J, Du Q. Allergy Asthma Immunol Res. 2016 Mar;8(2):161-9.


10.

Low-dose benzo[a]pyrene aggravates allergic airway inflammation in mice. Yanagisawa R, Koike E, Win-Shwe TT, Ichinose T, Takano H. J Appl Toxicol. 2016 Feb 25.


11.

Prevention of allergic rhinitis by ginger and the molecular basis of immunosuppression by 6-gingerol through T cell inactivation. Kawamoto Y, Ueno Y, Nakahashi E, Obayashi M, Sugihara K, Qiao S, Iida M, Kumasaka MY, Yajima I, Goto Y, Ohgami N, Kato M, Takeda K. J Nutr Biochem. 2016 Jan;27:112-22.


12.

Immunotoxic Effect of Low-Dose Methylmercury Is Negligible in Mouse Models of Ovalbumin or Mite-Induced Th2 Allergy. Nakamura R, Takanezawa Y, Sone Y, Uraguchi S, Sakabe K, Kiyono M.

Biol Pharm Bull. 2016;39(8):1353-8.


13.

Prevention of allergic rhinitis by ginger and the molecular basis of immunosuppression by 6-gingerol through T cell inactivation. Yoshiyuki Kawamoto, Yuki Ueno, Emiko Nakahashi, Momoko Obayashi, Kento Sugihara, Shanlou Qiao, Machiko Iida, Mayuko Y. Kumasaka, Ichiro Yajima, Yuji Goto, Nobutaka Ohgami, Masashi Kato, Kozue Takeda. The Journal of Nutritional Biochemistry, Volume 27, Jan. 2016, Pages 112–122


14.

Effects of Sohamhyoong-Tang on Ovalbumin-Induced Allergic Reaction in BALB/c Mice. Jo SH, Lee YJ, Kang DG, Lee HS, Kim DK, Park MC. Evid Based Complement Alternat Med. 2016;2016:6286020.


15.

Effect of diosmetin on airway remodeling in a murine model of chronic asthma. Ge A, Liu Y, Zeng X, Kong H, Ma Y, Zhang J, Bai F, Huang M. Acta Biochim Biophys Sin (Shanghai). Vol.47(8), p604-11, Aug 2015.


16.

PM2.5-rich dust collected from the air in Fukuoka, Kyushu, Japan, can exacerbate murine lung eosinophilia. He M, Ichinose T, Ren Y, Song Y, Yoshida Y, Arashidani K, Yoshida S, Nishikawa M, Takano H, Sun G. Inhal Toxicol. Vol.27(6), p287-99, May 2015.


17.

Anti-asthma potential of crocin and its effect on MAPK signaling pathway in a murine model of allergic airway disease. Xiong Y, Wang J, Yu H, Zhang X, Miao C. Immunopharmacol Immunotoxicol. Vol.10, p1-8, Mar 2015.


18.

Roles of lipoxin A4 receptor activation and anti-interleukin-1β antibody on the toll-like receptor 2/mycloid differentiation factor 88/nuclear factor-κB pathway in airway inflammation induced by ovalbumin. Kong X, Wu SH, Zhang L, Chen XQ. Mol Med Rep. 2015 Mar 5


19.

Pharyngeal aspiration of metal oxide nanoparticles showed potential of allergy aggravation effect to inhaled ovalbumin. Horie M, Stowe M, Tabei M, Kuroda E. Inhal Toxicol. Vol.27(3), p181-90, Feb 2015.


20.

Oxidized dietary oils enhance immediate- and/or delayed-type allergic reactions in BALB/c mice. Ogino H, Sakazaki F, Okuno T, Arakawa T, Ueno H. Allergol Int. Vol.64(1), p66-72, Jan 2015.


21.

The effects of nodakenin on airway inflammation, hyper-responsiveness and remodeling in a murine model of allergic asthma. Xiong Y, Wang J, Yu H, Zhang X, Miao C, Ma S. Immunopharmacol Immunotoxicol. Vol.36(5), p341-348, Oct 2014.


22.

Allogeneic pluripotent stem cells suppress airway inflammation in murine model of acute asthma. Ogulur I, Gurhan G, Kombak FE, Filinte D, Barlan I, Akkoc T. International Immunopharmacology, Vol.22(1), p31-40 Sep 2014.


23.

Effects of prior oral exposure to combinations of environmental immunosuppressive agents on ovalbumin allergen-induced allergic airway inflammation in Balb/c mice. Fukuyama T, Nishino R, Kosaka T, Watanabe Y, Kurosawa Y, Ueda H, Harada T.. Immunopharmacol Immunotoxicol. Vol.36(4), p261-70, Aug 2014.


24.

Enhancement of OVA-induced murine lung eosinophilia by co-exposure to contamination levels of LPS in Asian sand dust and heated dust. Ren Y, Ichinose T, He M, Song Y, Yoshida Y, Yoshida S, Nishikawa M, Takano H, Sun G, Shibamoto T. Allergy, Asthma & Clinical Immunology, Vol.10(1), Jun 2014.


25.

A bacterial extract of OM-85 Broncho-Vaxom prevents allergic rhinitis in mice. Han L, Zheng CP, Sun YQ, Xu G, Wen W, Fu QL. American Journal of Rhinology & Allergy, Vol.28(2), p110-116, Mar-Apr 2014.


26.

Broncho-Vaxom Attenuates Allergic Airway Inflammation by Restoring GSK3β-Related T Regulatory Cell Insufficiency. Fu R, Li J, Zhong H, Yu D, Zeng X, Deng M, Sun Y, Wen W, Li H. PLoS One. 2014 Mar 25;9(3):e92912


27.

Lung inflammation by fungus, Bjerkandera adusta isolated from Asian sand dust (ASD) aerosol and enhancement of ovalbumin-induced lung eosinophilia by ASD and the fungus in mice. Liu B, Ichinose T, He M, Kobayashi F, Maki T, Yoshida S, Yoshida Y, Arashidani K, Takano H, Nishikawa M, Sun G, Shibamoto T. Allergy, Asthma & Clinical Immunology, Vol.10(1), Feb 2014.


28.

Midazolam inhibits IgE production in mice via suppression of class switch recombination. Kusama H, Kobayashi R, Kurita-Ochiai T. Journal of Oral Science, Vol.56(1), p77-83, 2014.


29.

Induction of immune tolerance and reduction of aggravated lung eosinophilia by co-exposure to Asian sand dust and ovalbumin for 14 weeks in mice. He M., Ichinose T., Yoshida S., Takano H., Nishikawa M., Sun G. and Shibamoto T. Allergy, Asthma & Clinical Immunology, Vol.9(19), 2013.


30.

Galangin Abrogates Ovalbumin-Induced Airway Inflammation via Negative Regulation of NF-B. Zha W-J., Qian Y., Shen Y., Du Q., Chen F-F., Wu Z-Z., Li X. and Huang M. Evidence-Based Complementary and Alternative Medicine, Vol.2013 (2013), p14.


31.

Effects of two Asian sand dusts transported from the dust source regions of Inner Mongolia and northeast China on murine lung eosinophilia. M.He, T.Ichinose, Y.Song, Y.Yoshida, K.Arashidani, S.Yoshida, B.Liu, M.Nishikawa, H.Takano, G.Sun. Toxicology and Applied Pharmacology, Available online 26 July 2013.


32.

Effect of the size of receptor in allergy detection using field effect transistor biosensor. S.Hideshima, S.Kuroiwa, M.Kimura, S.Cheng, T.Osaka. Electrochimica Acta, Available online 24 July 2013.


33.

Elevated Macrophage Inflammatory Protein 1α and Interleukin-17 Production in an Experimental Asthma Model Infected with Respiratory Syncytial Virus. T.Ishioka, Y.Yamada, H.Kimura, M.Yoshizumi, H.Tsukagoshi, K.Kozawa, K.Maruyama, Y.Hayashi, M.Kato. Int Arch Allergy Immunol, Vol.161(suppl 2), p129-137, May 2013.


34.

Leukotriene B4 receptor BLT2 negatively regulates allergic airway eosinophilia . Y.Matsunaga, S.Fukuyama, T.Okuno, F.Sasaki, T. Matsunobu, Y.Asai, K.Matsumoto, K.Saeki, M.Oike, Y.Sadamura, K.Machida, Y.Nakanishi, M.Kubo, T.Yokomizo and H.Inoue. The FASEB Journal, Published online before print April 19, 2013.


35.

Effects of exposure to nanoparticle-rich or -depleted diesel exhaust on allergic pathophysiology in the murine lung. Tanaka M., Aoki Y., Takano H., Fujitani Y., Hirano S., Nakamura R., Sone Y., Kiyono M., Ichinose T., Itoh T., Inoue K. Journal of Toxicological Sciences, Vol.38(1), p35-48, Feb 2013.


36.

HIF-1α Inhibition Reduces Nasal Inflammation in a Murine Allergic Rhinitis Model. Zhou H, Chen X, Zhang W-M, Zhu L-P, Cheng L. PLOS one, 2012.


37.

Human Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Prevent Allergic Airway Inflammation in Mice. Sun Y-Q, Deng M-X, He J, Zeng Q-X, Wen W, Wong D S.H, Tse H-F, Xu G, Lian Q, Shi J, Fu Q-L. STEM CELLS, Vol.30(12), p2692-2699, Dec 2012.


38.

Aggravating effects of Asian sand dust on lung eosinophilia in mice immunized beforehand by ovalbumin. He M, Ichinose T, Yoshida S, Takano H, Nishikawa M, Mori I, Sun G, Shibamoto T. Inhalation Toxicology, Vol.24(11) , p751-761, Sep 2012.


39.

Attenuation of airway hyperreactivity and T helper cell type 2 responses by coumarins from Peucedanum praeruptorum Dunn in a murine model of allergic airway inflammation. Xiong Y-Y, Wu F-H, Wang J-S, Li J, Kong L-Y. Journal of Ethnopharmacology, Vol.141(1), p314-321, May 2012.


40.

Effects of lysed Enterococcus faecalis FK-23 on experimental allergic rhinitis in a murine model. Zhu L,Shimada T, Chen R, Lu M, Zhang Q, Lu W, Yin M, Enomoto T, Cheng L. Journal of Biomedical Research, Vol.26(3), p226-234, May 2012.


41.

Sphingosine-kinase 1 and 2 contribute to oral sensitization and effector phase in a mouse model of food allergy. S. C. Diesner., A. Olivera., S. Dillahunt., C. Schultz., T. Watzlawek., E. Forster-Waldl., A. Pollak., E. Jensen-Jarolim., E. Untersmayr., J. Rivera. Immunology Letters, Vol. 141, Issue 2, 30 January 2012, Pages 210-219


42.

Identification of Semaphorin 4B as a Negative Regulator of Basophil-Mediated Immune Responses. Y. Nakagawa., H. Takamatsu., T. Okuno., S. Kang., S. Nojima., T. Kimura., T. R. Kataoka., M. Ikawa., T. Toyofuku., I. Katayama., and A. Kumanogoh. The Journal of Immunology, March 1, 2011 vol. 186 no. 5 2881-2888


43.

Suppression of ovalbumin-induced allergic diarrhea by diminished intestinal peristalsis in RAMP1-deficient mice. R. Yoshikawa., N. Mikami., I. Otani., T. Kishimoto., S. Nishioka., N. Hashimoto., Y. Miyagi., Y. Takuma., K. Sueda., S. Fukada., H. Yamamoto., K. Tsujikawa. Biochemical and Biophysical Research Communications, Vol. 410, Issue 3, 8 July 2011, Pages 389-393


44.

Cortex Mori Radicis extract exerts antiasthmatic effects via enhancement of CD4+CD25+Foxp3+ regulatory T cells and inhibition of Th2 cytokines in a mouse asthma model. H.-J. Kim., H. J. Lee., S.-J. Jeong., H.-J. Lee., S.-H. Kim., E.-J. Park. Journal of Ethnopharmacology, Vol. 138, Issue 1, 31 October 2011, Pages 40-46


45.

Urban particulate matter in Beijin,China,enhances allergen-induced murine lung eosinophilia. He,M.,Ichinose,T.,Yoshida,S.,Nishikawa,M.,Mori,I.,Yanagisawa,R.,Takano,H.,Inoue,K.,Sun,G.,Shibamoto,T. Inhalation Toxicology 22(9):709-718,August,2010


46.

Deficiency in the Serum-Derived Hyaluronan-Associated Protein-Hyaluronan Complex Enhances Airway Hyperresponsiveness in a Murine Model of Asthma. L. Zhu., L. Zhuo., K. Kimata., E. Yamaguchi., H. Watanabe., M. A. Aronica., V. C. Hascall., K. Baba. Int Arch Allergy Immunol 153:223-233 2010


47.

Thioredoxin suppresses airway inflammation independently of systemic Th1/Th2 immune modulation. M. Torii., L. Wang., N. Ma., K. Saito., T. Hori., M. Sato-Ueshima., Y. Koyama., H. Nishikawa., N. Katayama., A. Mizoguchi., H. Shiku., J. Yodoi., K. Kuribayashi., T. Kato. European Journal of Immunology Vol.40(3) 787-796 2010


48.

Peritoneal injection of fucoidan suppresses the increase of plasma IgE induced by OVA-sensitization. Yanase,Y.,Hiragun,T.,Uchida,K.,Ishii,K.,Oomizu,S.,Suzuki,H.,Mihara,S.,Iwamoto,K.,Matsuo,H.,Onishi,N.,Kameyoshi,Y.,and Hide,M. Biochemical and Biophysical Research Communications 387:3:435- 439,2009


49.

Peroxisome Proliferator-Activated Receptor gNegatively Regulates Allergic Rhinitis in Mice. Fukui,N.,Honda,K.,Ito,E.,and Ishikawa K. Allergology Internatioal.58:247-253,2009


50.

IL-16 Variabillity and Modulation by Antiallergic Drugs in a Murine Experimental Allergic Rhinitis Model. Akiyama,K.,Karaki,M.,Kobayshi,R.,Dobashi,H.,Ishida,T, and Mori,N. Allergy and Immunology 149:4,2009


51.

Frequency of Foxp3+CD4+CD25+ T cell is associated with the phenotypes of allergic asthma. Matsumoto,K.,Inoue,H.,Fukuyama,A.,Kan,O,K.,Eguchi,T,M.,Matsumoto,T.,Moriwaki,A.,Nakano,T., and Nakanishi,Y. Respirology 14:2,2009


52.

Differential Regulatory Function of Resting and Preactivated Allergen-Specific CD4+CD25+ Regulatory T Cells in Th2-Type Airway Inflammation. Saito, K., Torii, M., Ning Ma, Tsuchiya, T., Wang, L., Hori, T., Nagakubo, D., Nitta, N.,Kanegasaki, S., Hieshima, K., Yoshie, O., Gabazza, E.C., Katayama, N., Shiku, H.,Kuribayashi, K. and Kato, T. The Journal of Immunology, 181:6889-6897, 2008


53.

Effects of Asian Sand Dust, Arizona Sand Dust, Amorphous Silica and Aluminum Oxide on Allergic Inflammation in the Murine Lung. Ichinose, T., Yoshida, S., Sadakane, K., Takano, H., Yanagizawa, R., Inoue, K., Nishikawa, M.,Mori, I., Kawazato, H., Yasuda, A. and Shibamoto, T. Inhalation Toxicology, Volume 20, Issue 7, 685-694, 2008


54.

The Effects of Microbial Materials Adhered to Asian Sand Dust on Allergic Lung Inflammation. Ichinose,T., Yoshida,S., Hiyoshi,K., Sadakane,K., Takano,H., Nishikawa,M., Mori,I., Yanagisawa,R., Kawazato,H., Yasuda,A., and Shibamoto,T. Arch Environ Contam Toxicol 55:348-357,2008


55.

Differential Regulatory Function of Resting and Preactivated Allergen-Specific CD4+CD25+ Regulatory T cell in Th2-Type Airway Inflammation. Saito,K., Torii,M., Ma,N., Tsuchiya,T., Wang,L.,Hori,T., Nagakubo,D., Nitta,N., Kanegasaki,S., Hieshima,K., Yoshie,O., Gabazza,E,C., Katayama,N., Shiku,H., Kuribayashi,K., and Kato,T. The Journal of Immunology 181:6889-6897,2008



产品列表

产品编号 产品名称 产品规格 产品等级 备注
630-07669 (AKRIE-040)小鼠卵清蛋白特异性免疫球蛋白G1(OVA-IgG1) ELISA试剂盒
LBIS® OVA-IgG1 Mouse
96 tests

免责声明

1. 本公司密切关注本网站发布的内容,但不保证发布内容的准确性、完整性、可靠性和最新性等。

2. 本公司不保证使用本网站期间不会出现故障或计算机病毒污染的风险。

3. 无论何种原因,使用本网站时给用户或第三方造成的任何不利或损害,本公司概不负责。此外,对于用户与其他用户或第三方之间因本网站发生的任何交易、通讯

3. 纠纷,本公司概不负责。

4. 本网站可提供的所有产品和服务均不得用于人体或动物的临床诊断或治疗,仅可用于科研等非医疗目的。如任何用户将本网站提供的产品和服务用临床诊断或治

4. 疗,以及他特定的用途或行为,本公司概不保证其安全性和有效性,并且不负任何相关的法律责任。