LBIS® 大鼠胰岛素 ELISA 试剂盒(T 型)
LBIS® Insulin-Rat-T
- 产品特性
- 相关资料
- Q&A
- 参考文献
LBIS® Insulin-Rat-T
LBIS® 大鼠胰岛素 ELISA 试剂盒(T 型)
胰岛素是由胰脏内的胰岛β细胞分泌,分子量约 5800,等电点在 5.4 左右的一种蛋白质激素。
A6-A11、A7-B7、A20-B-19 之间形成二硫键,在酸性溶液或者不含 Zn 离子的中性水溶液中形成二聚体,在含锌离子的中性溶液中,则形成含2个 Zn 离子的六聚体。
肝脏、肌肉、脂肪组织是主要的靶组织,分别有以下的作用。
肝脏:促进糖原、蛋白质、脂肪酸合成、促进糖类的摄取和利用、抑制糖异生。
肌肉:糖类、氨基酸、K细胞膜通透性增大、促进糖原、蛋白质的合成、抑制蛋白质分解。
脂肪组织:葡萄糖细胞膜通透性增大、促进脂肪酸的合成。
胰岛素是细胞内的合成单链胰岛素原通过二硫键结合一起形成的。在酶分解作用下被激活,C肽和胰岛素分离。
◆特点
● 短时间测定(总的反应时间:3小时)
● 微量样品(标准操作:10 μL)可测
● 使用对环境无害的防腐剂
● 全部试剂均为液体,可直接使用
● 精密的测定精度和高再现性
● 操作简便,不需要特别的预处理
● 有效期限为12个月
◆构成
组成 |
状态 |
容量 |
(A) 抗体固相化 96 孔板 |
洗净后使用 |
96 wells(8×12)/1 块 |
(B) 胰岛素标准溶液(大鼠)(200 ng/mL) |
稀释后使用 |
25 μL/1 瓶 |
(C) 缓冲液 |
即用 |
60 mL/1 瓶 |
(D) 生物素结合抗胰岛素抗体 |
稀释后使用 |
10 μL/1 瓶 |
(E) 过氧化物・抗生物素蛋白结合物 |
稀释后使用 |
20 μL/1 瓶 |
(F) 显色液(TMB) |
即用 |
12 mL/1 瓶 |
(H) 反应终止液(1M H2SO4)※小心轻放 |
即用 |
12 mL/1 瓶 |
( I ) 浓缩洗净液(10×) |
稀释后使用 |
100 mL/1 瓶 |
封板膜 |
3 张 |
|
使用说明书 |
1 份 |
◆样品信息
大鼠的血清•血浆•培养液
10 μL/well(标准操作)
※血浆采血建议使用肝素处理血液
◆测量范围
0.156~10 ng/mL(标准曲线范围)
◆Validation data
精度测试(组内变异)
样品 |
A |
B |
C |
D |
1 |
0.589 |
1.211 |
2.600 |
4.991 |
2 |
0.568 |
1.228 |
2.600 |
4.971 |
3 |
0.568 |
1.228 |
2.532 |
5.036 |
4 |
0.557 |
1.211 |
2.538 |
5.026 |
5 |
0.557 |
1.253 |
2.582 |
4.925 |
6 |
0.578 |
1.220 |
2.563 |
4.880 |
7 |
0.578 |
1.228 |
2.618 |
5.031 |
8 |
0.536 |
1.228 |
2.618 |
4.885 |
mean |
0.566 |
1.226 |
2.581 |
4.968 |
SD |
0.0165 |
0.0131 |
0.0340 |
0.0645 |
CV(%) |
2.92 |
1.07 |
1.32 |
1.30 |
单位:ng/mL
重复性测试(组间变异)
测量日/样品 |
E |
F |
G |
第0天 |
6.74 |
3.31 |
1.16 |
第1天 |
6.69 |
3.25 |
1.22 |
第2天 |
6.23 |
3.21 |
1.21 |
mean |
6.55 |
3.25 |
1.20 |
SD |
0.2792 |
0.0479 |
0.0325 |
CV(%) |
4.3 |
1.5 |
2.7 |
单位:ng/mL n=5
加标回收测试
样品H
添加量 |
理论值 |
实测值 |
回收率(%) |
0 |
– |
0.996 |
– |
0.500 |
1.496 |
1.484 |
99.2 |
1.000 |
1.996 |
2.048 |
103 |
2.000 |
2.996 |
2.779 |
92.7 |
单位:ng/mL
样品I
添加量 |
理论值 |
实测值 |
回收率(%) |
0 |
– |
1.086 |
– |
0.500 |
1.586 |
1.562 |
98.5 |
1.000 |
2.086 |
2.061 |
98.8 |
2.000 |
3.086 |
2.753 |
89.2 |
单位:ng/mL
样品J
添加量 |
理论值 |
实测值 |
回收率(%) |
0 |
– |
1.160 |
– |
0.500 |
1.660 |
1.637 |
98.6 |
1.000 |
2.160 |
2.054 |
95.1 |
2.000 |
3.166 |
2.963 |
93.6 |
单位:ng/mL
稀释直线性测试
用稀释缓冲液分4次连续稀释2个血清样品的测量结果,直线回归方程的R2在0.9983~0.9992之间。
参考文献
1. |
Canagliflozin potentiates GLP-1 secretion and lowers the peak of GIP secretion in rats fed a high-fat high-sucrose diet. Hira T, Koga T, Sasaki K, Hara H. Biochem Biophys Res Commun. 2017 Oct 14;492(2):161-165. |
2. |
Imidacloprid insecticide exposure induces stress and disrupts glucose homeostasis in male rats. Khalil SR, Awad A, Mohammed HH, Nassan MA. Environ Toxicol Pharmacol. 2017 Oct;55:165-174. |
3. |
Effects of short-term fasting on the Akt-mediated pathway involved in protein metabolism in chicken skeletal muscle. Saneyasu T, Tsuchii N, Nakano Y, Kitashiro A, Tsuchihashi T, Shindo H, Honda K, Kamisoyama H. Domest Anim Endocrinol. 2017 Oct;61:54-61. |
4. |
Impact of difructose anhydride III, raffinose, and fructooligosaccharides on energy intake, gut hormones, and cecal fermentation in rats fed a high-fat and high-sucrose diet. Hira T, Yanagihara K, Koga T, Takahashi K, Nagura T, Uchino H, Hara H. Biosci Biotechnol Biochem. 2017 Sep 27:1-9. |
5. |
Branched-chain amino acid supplementation restores reduced insulinotropic activity of a low-protein diet through the vagus nerve in rats. Horiuchi M, Takeda T, Takanashi H, Ozaki-Masuzawa Y, Taguchi Y, Toyoshima Y, Otani L, Kato H, Sone-Yonezawa M, Hakuno F, Takahashi SI, Takenaka A. Nutr Metab (Lond). 2017 Sep 15;14:59. |
6. |
Role of Glyceraldehyde-derived AGEs and Mitochondria in Superoxide Production in Femoral Artery of OLETF Rat and Effects of Pravastatin. Hori E, Kikuchi C, Nagami C, Kajikuri J, Itoh T, Takeuchi M, Matsunaga T. Biol Pharm Bull. 2017 Aug 22. |
7. |
Glucagon-like peptide-1 reduces pancreatic β-cell mass through hypothalamic neural pathways in high-fat diet-induced obese rats. Ando H, Gotoh K, Fujiwara K, Anai M, Chiba S, Masaki T, Kakuma T, Shibata H. Sci Rep. 2017 Jul 17;7(1):5578. |
8. |
Beneficial effect of combined treatment with octreotide and pasireotide in PCK rats, an orthologous model of human autosomal recessive polycystic kidney disease. Kugita M, Nishii K, Yamaguchi T, Suzuki A, Yuzawa Y, Horie S, Higashihara E, Nagao S PLoS One. 2017 May 18;12(5):e0177934. |
9. |
Green tea extract intake during lactation modified cardiac macrophage infiltration and AMP-activated protein kinase phosphorylation in weanling rats from undernourished mother during gestation and lactation. Matsumoto E, Kataoka S, Mukai Y, Sato M, Sato S. J Dev Orig Health Dis. 2017 Apr;8(2):178-187. |
10. |
Exogenous thyroxine improves glucose intolerance in insulin-resistant rats. Vazquez-Anaya G, Martinez B, Sonanez-Organis JG, Nakano D, Nishiyama A, Ortiz RM. J Endocrinol. 2017 Mar;232(3):501-511. |
11. |
Beneficial effects of metformin on energy metabolism and visceral fat volume through a possible mechanism of fatty acid oxidation in human subjects and rats. Tokubuchi I, Tajiri Y, Iwata S, Hara K, Wada N, Hashinaga T, Nakayama H, Mifune H, Yamada K PLoS One. 2017 Feb 3;12(2):e0171293. |
12. |
Resistant maltodextrin or fructooligosaccharides promotes GLP-1 production in male rats fed a high-fat and high-sucrose diet, and partially reduces energy intake and adiposity. Hira T, Suto R, Kishimoto Y, Kanahori S, Hara H. Eur J Nutr. 2017 Feb 4. |
13. |
Lactoferrin ameliorates corticosterone-related acute stress and hyperglycemia in rats. Maekawa Y. Sugiyama A, Takeuchi T. J Vet Med Sci. 2017 Feb 28;79(2):412-417. |
14. |
Dioscorea esculenta-induced increase in muscle sex steroid hormones is associated with enhanced insulin sensitivity in a type 2 diabetes rat model. Sato K, Fujita S, Iemitsu M. FASEB J. 2017 Feb;31(2):793-801. |
15. |
Mild Hyperbaric Oxygen Inhibits Growth-related Decrease in Muscle Oxidative Capacity of Rats with Metabolic Syndrome. Takemura A, Ishihara A. J Atheroscler Thromb. 2017 Jan 1;24(1):26-38. |
16. |
The Sodium Glucose Cotransporter 2 Inhibitor Ipragliflozin Promotes Preferential Loss of Fat Mass in Non-obese Diabetic Goto?Kakizaki Rats. Toshiyuki Takasu, Yuka Hayashizaki, Jiro Hirosumi, Hideaki Minoura, Nobuaki Amino, Eiji Kurosaki, Shoji Takakura. Biological and Pharmaceutical Bulletin, Vol.40 (2017), No. 5, p.675-680 |
17. |
Anti-Prediabetic Effect of 6-O-Caffeoylsophorose in Prediabetic Rats and Its Stimulation of Glucose Uptake in L6 Myotubes. Gonzalo Miyagusuku-Cruzado, Naoki Morishita, Keiichi Fukui, Norihiko Terahara, Toshiro Matsui. Food Science and Technology Research, Vol.23(2017), No.3, p.449-456 |
18. |
The Sodium Glucose Cotransporter 2 Inhibitor Ipragliflozin Promotes Preferential Loss of Fat Mass in Non-obese Diabetic Goto-Kakizaki Rats. Takasu T, Hayashizaki Y, Hirosumi J, Minoura H, Amino N, Kurosaki E, Takakura S. Biol Pharm Bull. 2017;40(5):675-680. |
19. |
Evaluation of the Effects and Mechanism of L-Citrulline on Anti-obesity by Appetite Suppression in Obese/Diabetic KK-Ay Mice and High-Fat Diet Fed SD Rats. Kudo M, Yoshitomi H, Momoo M, Suguro S, Yamagishi Y, Gao M. Biol Pharm Bull. 2017;40(4):524-530. |
20. |
Exogenous thyroxine improves glucose intolerance in insulin-resistant rats. Vazquez-Anaya G, Martinez B, Sonanez-Organis JG, Nakano D, Nishiyama A, Ortiz RM. J Endocrinol. 2017 Mar;232(3):501-511 |
21. |
Anti-prediabetic effect of rose hip (Rosa canina) extract in spontaneously diabetic Torii rats. Chen SJ, Aikawa C, Yoshida R, Kawaguchi T, Matsui T. J Sci Food Agric. 2017 Feb 9. |
22. |
O leuropein aglycone enhances UCP1 expression in brown adipose tissue in high-fat-diet-induced obese rats by activating β-adrenergic signaling. Oi-Kano Y, Iwasaki Y, Nakamura T, Watanabe T, Goto T, Kawada T, Watanabe K, Iwai K. J Nutr Biochem. 2017 Feb;40:209-218. |
23. |
Beneficial effects of metformin on energy metabolism and visceral fat volume through a possible mechanism of fatty acid oxidation in human subjects and rats. Tokubuchi I, Tajiri Y, Iwata S, Hara K, Wada N, Hashinaga T, Nakayama H, Mifune H, Yamada K. PLoS One. 2017 Feb 3;12(2):e0171293 |
24. |
Resistant maltodextrin or fructooligosaccharides promotes GLP-1 production in male rats fed a high-fat and high-sucrose diet, and partially reduces energy intake and adiposity. Hira T, Suto R, Kishimoto Y, Kanahori S, Hara H. Eur J Nutr. 2017 Feb 4. |
25. |
Lactoferrin potentially facilitates glucose regulation and enhances the incretin effect. Maekawa Y, Sugiyama A, Takeuchi T. Biochem Cell Biol. 2017 Feb;95(1):155-161. |
26. |
Mild Hyperbaric Oxygen Inhibits Growth-related Decrease in Muscle Oxidative Capacity of Rats with Metabolic Syndrome. Takemura A, Ishihara A. J Atheroscler Thromb. 2017 Jan 1;24(1):26-38. |
27. |
Intracellular alkalinization by phosphate uptake via type III sodium-phosphate cotransporter participates in high-phosphate-induced mitochondrial oxidative stress and defective insulin secretion. Nguyen TT, Quan X, Xu S, Das R, Cha SK, Kong ID, Shong M, Wollheim CB, Park KS. FASEB J. 2016 Dec;30(12):3979-3988 |
28. |
Plekhs1 and Prdx3 are candidate genes responsible for mild hyperglycemia associated with obesity in a new animal model of F344-fa-nidd6 rat. Kotoh J, Sasaki D, Matsumoto K, Maeda A. J Vet Med Sci. 2016 Dec 1;78(11):1683-1691. |
29. |
Melinjo (Gnetum gnemon) extract intake during lactation stimulates hepatic AMP-activated protein kinase in offspring of excessive fructose-fed pregnant rats. Kataoka S, Mukai Y, Takebayashi M, Kudo M, Acuram UR, Kurasaki M, Sato S. Reprod Biol. 2016 Jun;16(2):165-73 |
30. |
Rice (Oryza sativa japonica) Albumin Suppresses the Elevation of Blood Glucose and Plasma Insulin Levels after Oral Glucose Loading. Ina S, Ninomiya K, Mogi T, Hase A, Ando T, Matsukaze N, Ogihara J, Akao M, Kumagai H, Kumagai H. J Agric Food Chem. 2016 Jun 22;64(24):4882-90. |
31. |
PPARγ activation alters fatty acid composition in adipose triglyceride, in addition to proliferation of small adipocytes, in insulin resistant high-fat fed rats. Sato D, Oda K, Kusunoki M, Nishina A, Takahashi K, Feng Z, Tsutsumi K, Nakamura T. Eur J Pharmacol. 2016 Feb 15;773:71-7. |
32. |
Exercise and dietary change ameliorate high fat diet induced obesity and insulin resistance via mTOR signaling pathway. Bae JY, Shin KO, Woo J, Woo SH, Jang KS, Lee YH, Kang S. J Exerc Nutrition Biochem. 2016 Jun;20(2):28-33. |
33. |
The IGF-1/Akt/S6 Signaling Pathway is Age-Dependently Downregulated in the Chicken Breast Muscle. Takaoki Saneyasu, Mariko Inui, Sayaka Kimura, Yu Yoshimoto, Nami Tsuchii, Haruka Shindo, Kazuhisa Honda, Hiroshi Kamisoyama. The Journal of Poultry Science, Article ID: 0150171 |
34. |
The dipeptidyl peptidase IV inhibitor vildagliptin suppresses development of neuropathy in diabetic rodents: Effects on peripheral sensory nerve function, structure and molecular changes. Tsuboi K, Mizukami H, Inaba W, Baba M, Yagihashi S. J Neurochem. Vol.136, Issue 4, Feb. 2016, p859–870 |
35. |
Characterization of bioactive agents in five types of marketed sprouts and comparison of their antihypertensive, antihyperlipidemic, and antidiabetic effects in fructose-loaded SHRs. Nakamura K, Koyama M, Ishida R, Kitahara T, Nakajima T, Aoyama T. J Food Sci Technol. 2016 Jan;53(1):581-90. |
36. |
Beneficial effect of D-allose for isolated islet culture prior to islet transplantation. Kashiwagi H, Asano E, Noguchi C, Sui L, Hossain A, Akamoto S, Okano K, Tokuda M, Suzuki Y. J Hepatobiliary Pancreat Sci. 2016 Jan;23(1):37-42. |
37. |
Characterization of bioactive agents in five types of marketed sprouts and comparison of their antihypertensive, antihyperlipidemic, and antidiabetic effects in fructose-loaded SHRs. Nakamura K, Koyama M, Ishida R, Kitahara T, Nakajima T, Aoyama T. J Food Sci Technol. 2016 Jan;53(1):581-90. |
38. |
Characterization of the Prediabetic State in a Novel Rat Model of Type 2 Diabetes, the ZFDM Rat. Gheni G, Yokoi N, Beppu M, Yamaguchi T, Hidaka S, Kawabata A, Hoshino Y, Hoshino M, Seino S. J Diabetes Res. 2015:261418. |
39. |
The dipeptidyl peptidase IV inhibitor vildagliptin suppresses development of neuropathy in diabetic rodents: Effects on peripheral sensory nerve function, structure and molecular changes. Tsuboi K, Mizukami H, Inaba W, Baba M, Yagihashi S. J Neurochem. 2015 Nov 25. |
40. |
Resistant maltodextrin promotes fasting glucagon-like peptide-1 secretion and production together with glucose tolerance in rats. Hira T, Ikee A, Kishimoto Y, Kanahori S, Hara H. Br J Nutr. Vol.114(1), p34-42, Jul 2015. |
41. |
Rice protein hydrolysates stimulate GLP-1 secretion, reduce GLP-1 degradation, and lower the glycemic response in rats. Ishikawa Y, Hira T, Inoue D, Harada Y, Hashimoto H, Fujii M, Kadowaki M, Hara H. Food Funct. Jun 2015. |
42. |
L-Citrulline increases hepatic sensitivity to insulin by reducing the phosphorylation of serine 1101 in insulin receptor substrate-1. Yoshitomi H, Momoo M, Ma X, Huang Y, Suguro S, Yamagishi Y, Gao M. BMC Complement Altern Med. Vol.15:188, Jun 2015. |
43. |
Black soybean extract reduces fatty acid contents in subcutaneous, but not in visceral adipose triglyceride in high-fat fed rats Sato D, Kusunoki M, Seino N, Nishina A, Feng Z, Tsutsumi K, Nakamura T. International Journal of Food Sciences and Nutrition , Published online: 20 May 2015. |
44. |
Fasting for 3 days during the suckling-weaning transient period in male rats induces metabolic abnormalities in the liver and is associated with impaired glucose tolerance in adulthood. Ikeda M, Honma K, Mochizuki K, Goda T. Eur J Nutr. May 2015. |
45. |
Stimulatory effect of insulin on renal proximal tubule sodium transport is preserved in type 2 diabetes with nephropathy. Nakamura M, Satoh N, Suzuki M, Kume H, Homma Y, Seki G, Horita S. Biochem Biophys Res Commun. Vol.461(1), p154-8, May 2015. |
46. |
Preserved Na/HCO3 cotransporter sensitivity to insulin may promote hypertension in metabolic syndrome. Nakamura M, Yamazaki O, Shirai A, Horita S, Satoh N, Suzuki M, Hamasaki Y, Noiri E, Kume H, Enomoto Y, Homma Y, Seki G. Kidney Int. Vol.87(3), p535-42, Mar 2015. |
47. |
Dietary protein derived from dried bonito fish improves type-2 diabetes mellitus-induced bone frailty in Goto-Kakizaki rats. Ochiai M, Kuroda T, Gohtani S, Matsuo T. J Food Sci. Vol.80(4), p848-56, Apr 2015. |
48. |
Ability of natural astaxanthin from shrimp by-products to attenuate liver oxidative stress in diabetic rats. Sila A, Kamoun Z, Ghlissi Z, Makni M, Nasri M, Sahnoun Z, Nedjar-Arroume N, Bougatef A. Pharmacol Rep. Vol.67(2), p310-6. Apr 2015. |
49. |
The effects of black garlic (Allium satvium) extracts on lipid metabolism in rats fed a high fat diet. Ha AW, Ying T, Kim WK. Nutr Res Pract. 2015 Feb;9(1):30-6. |
50. |
Resistant maltodextrin promotes fasting glucagon-like peptide-1 secretion and production together with glucose tolerance in rats. Hira T, Ikee A, Kishimoto Y, Kanahori S, Hara H. Br J Nutr. Vol.11:1-9. Feb 2015. |
51. |
Effects of sleeve gastrectomy and gastric banding on the hypothalamic feeding center in an obese rat model. Kawasaki T, Ohta M, Kawano Y, Masuda T, Gotoh K, Inomata M, Kitano S. Surg Today. Feb 2015. |
52. |
Preventive effects of the angiotensin-converting enzyme inhibitor, captopril, on the development of azoxymethane-induced colonic preneoplastic lesions in diabetic and hypertensive rats. Kochi T, Shimizu M, Ohno T, Baba A, Sumi T, Kubota M, Shirakami Y, Tsurumi H, Tanaka T, Moriwaki H. Oncol Lett. Vol.8(1), p223-229. Jul 2014. |
53. |
Dietary Protein Derived from Dried Bonito Fish Improves Type-2 Diabetes Mellitus-Induced Bone Frailty in Goto-Kakizaki Rats. Ochiai M1, Kuroda T, Gohtani S, Matsuo T. J Food Sci. Feb 2015. |
54. |
Pancreatic fat accumulation, fibrosis, and acinar cell injury in the Zucker diabetic fatty rat fed a chronic high-fat diet. Matsuda A, Makino N, Tozawa T, Shirahata N, Honda T, Ikeda Y, Sato H, Ito M, Kakizaki Y, Akamatsu M, Ueno Y, Kawata S. Pancreas. Vol.43(5), p735-743. Jul 2014. |
55. |
Comparison of mechanisms underlying changes in glucose utilization in fasted rats anesthetized with propofol or sevoflurane: Hyperinsulinemia is exaggerated by propofol with concomitant insulin resistance induced by an acute lipid load. Li X, Kitamura T, Kawamura G, Mori Y, Sato K, Araki Y, Sato R, Yamada Y. Biosci Trends.Vol.8(3), p155-162. Jun 2014. |
56. |
Chronic Administration of Bovine Milk-Derived α-Lactalbumin Improves Glucose Tolerance via Enhancement of Adiponectin in Goto-Kakizaki Rats with Type 2 Diabetes. Yamaguchi M., Takai S. Biological and Pharmaceutical Bulletin, Vol. 37 (2014) No. 3, p.404-408, 2014. |
57. |
Maternal fructose intake during pregnancy modulates hepatic and hypothalamic AMP-activated protein kinase signaling in gender-specific manner in offspring. Mukai Y., Ozaki H., Serita Y. and Sato S. Clinical and Experimental Pharmacology and Physiology, 2014. |
58. |
SGLT2 selective inhibitor ipragliflozin reduces body fat mass by increasing fatty acid oxidation in high-fat diet-induced obese rats. Yokono M., Takasu T., Hayashizaki Y., Mitsuoka K., Kihara R., Muramatsu Y., Miyoshi S., Tahara A, Kurosaki E., Li Q., Tomiyama H., Sasamata M., Shibasaki M., Uchiyama Y. European Journal of Pharmacology, Vol.727, p66-74, Mar 2014. |
59. |
Non-alcoholic steatohepatitis and preneoplastic lesions develop in the liver of obese and hypertensive rats: suppressing effects of EGCG on the development of liver lesions. Kochi T, Shimizu M, Terakura D, Baba A, Ohno T, Kubota M, Shirakami Y, Tsurumi H, Tanaka T, Moriwaki H. Cancer Lett. Vol.342(1), p60-69, Jan 2014. |
60. |
Novel GPR40 agonist AS2575959 exhibits glucose metabolism improvement and synergistic effect with sitagliptin on insulin and incretin secretion. Tanaka H., Yoshida S., Minoura H., Negoro K., Shimaya A., Shimokawa T., Shibasaki M. Life Sciences, Vol.94(2), p115-121, Jan 2014. |
61. |
Taurine Alleviates the Progression of Diabetic Nephropathy in Type 2 Diabetic Rat Model. Koh JH., Lee ES., Hyun M., Kim HM., Choi YJ., Lee EY., Yadav D. and Chung CH. International Journal of Endocrinology, Vol.2014 (2014). |
62. |
Effects of Sleeve Gastrectomy on Lipid Metabolism in an Obese Diabetic Rat Model. Kawano, Y., Ohta, M., Hirashita, T., Masuda, T., Inomata, M., Kitano. S. Obesity Surgery, Vol.23(12), p1947-1956, Dec 2013. |
63. |
Effects of Sleeve Gastrectomy on Lipid Metabolism in an Obese Diabetic Rat Model. Kawano, Y., Ohta, M., Hirashita, T., Masuda, T., Inomata, M., Kitano. S. Obesity Surgery, Vol.23(12), p1947-1956, Dec 2013. |
64. |
Effects of electrical microstimulation of peripheral sympathetic nervous fascicle on glucose uptake in rats. Sato D., Shinzawa G., Kusunoki M., Matsui T., Sasaki H., Feng Z., Nishina A., Nakamura T. Journal of Artificial Organs, Vol.16(3), p352-358, Sep 2013. |
65. |
Long-term effect of green tea extract during lactation on AMPK expression in rat offspring exposed to fetal malnutrition. S.Sato, Y.Mukai, M.Hamaya, Y.Sun, M.Kurasaki. Nutrition, Vol.29(9), p1152-1158, Sep 2013. |
66. |
Effects of Sleeve Gastrectomy on Lipid Metabolism in an Obese Diabetic Rat Model. Y.Kawano, M.Ohta, T.Hirashita, T.Masuda, M.Inomata, S.Kitano. Obesity Surgery, Jul 2013. |
67. |
Glucose Use in Fasted Rats Under Sevoflurane Anesthesia and Propofol Anesthesia. K.Sato, T.Kitamura, G.Kawamura, Y.Mori, R.Sato, Y.Araki, Y.Yamada. Anesth Analg, Jun 2013. |
68. |
Oral administration of corn Zein hydrolysate stimulates GLP-1 and GIP secretion and improves glucose tolerance in male normal rats and Goto-Kakizaki rats. N.Higuchi, T.Hira, N.Yamada and H.Hara. Endocrinology, Jun 2013. |
69. |
Pancreatic stellate cells reduce insulin expression and induce apoptosis in pancreatic β-cells. K.Kikuta, A.Masamune, S.Hamada, T.Takikawa, E.Nakano, T.Shimosegawa. Biochemical and Biophysical Research Communications, Vol.433(3), p292-297, Apr 2013. |
70. |
Pancreatic stellate cells reduce insulin expression and induce apoptosis in pancreatic β-cells. Kikuta K, Masamune A, Hamada S, Takikawa T, Nakano E, Shimosegawa T. Biochemical and Biophysical Research Communications,Available online 13, Mar 2013 |
71. |
Hypothalamic Brain-Derived Neurotrophic Factor Regulates Glucagon Secretion Mediated by Pancreatic Efferent Nerves. Gotoh K, Masaki T, Chiba S, Ando H, Fujiwara K, Shimasaki T, Mitsutomi K, Katsuragi I, Kakuma T, Sakata T, Yoshimatsu H. Journal of Neuroendocrinology, Vol.25(3), p302-311, Mar 2013. |
72. |
Effects of electrical microstimulation of peripheral sympathetic nervous fascicle on glucose uptake in rats. Sato D, Shinzawa G, Kusunoki M, Matsui T, Sasaki H, Feng Z, Nishina A, Nakamura T. Journal of Artificial Organs, Mar 2013. |
73. |
Improvement of erectile function by Korean red ginseng (Panax ginseng) in a male rat model of metabolic syndrome. Kim S-D, Kim Y-J, Huh J-S, Kim S-W and Sohn D-W. Asian Journal of Andrology , Feb 2013. |
74. |
Quercetin intake during lactation modulates the AMP-activated protein kinase pathway in the livers of adult male rat offspring programmed by maternal protein restriction. Sato S., Mukai Y., Saito T. The Journal of Nutritional Biochemistry, Vol.24(1), p118-123, Jan 2013. |
75. |
Reduction of reactive oxygen species ameliorates metabolism-secretion coupling in islets of diabetic GK rats by suppressing lactate overproduction. Sasaki M, Fujimoto S, Sato Y, Nishi Y, Mukai E, Yamano G, Sato H, Tahara Y, Ogura K, Nagashima K and Inagaki N. Diabetes, January 24, 2013 , In press. |
76. |
Derangement of ghrelin secretion after long-term high-fat diet feeding in rats. Sugiishi A, Kimura M, Kamiya R, Ueki S, Yoneya M, Saito Y, Saito H. Hepatology Research, 2013, In press.
|
77. |
Proteomic and bioinformatic analysis of membrane proteome in type 2 diabetic mouse liver. Kim G-H, Park E C, Yun S-H, Hong Y, Lee D-G, Shin E-Y, Jung J, Kim Y H, Lee K-B, Jang I-S, Lee Z-W, Chung Y-H, Choi J-S, Cheong C, Kim S, Kim S II. PROTEOMICS, 2013, In press. |
78. |
A Novel Rat Model of Type 2 Diabetes: The Zucker Fatty Diabetes Mellitus ZFDM Rat. Yokoi N, Hoshino M, Hidaka S, Yoshida E, Beppu M, Hoshikawa R, Sudo K, Kawada A, Takagi S and Seino S. Journal of Diabetes Research, Vol.2013 (2013) |
79. |
Urinary cystatin C as a biomarker for diabetic nephropathy and its immunohistochemical localization in kidney in Zucker diabetic fatty (ZDF) rats. Togashi Y, Miyamoto Y. Experimental and Toxicologic Pathology,Available online 12 Jul 2012. |
80. |
Artemisia campestris leaf extract alleviates early diabetic nephropathy in rats by inhibiting protein oxidation and nitric oxide end products. Mediha S, Hamadi F, Nejla S, Yassine C, Mohamed M, Najiba Z. Pathology – Research and Practice, Vol.208(3), p157-162, Mar 2012. |
81. |
Fenugreek with reduced bitterness prevents diet-induced metabolic disorders in rats. Muraki E, Chiba H, Taketani K, Hoshino S, Tsuge N, Tsunoda N and Kasono K. Lipids in Health and Disease, Vol.11(58), 2012. |
82. |
Oral Ingestion of Aloe vera Phytosterols Alters Hepatic Gene Expression Profiles and Ameliorates Obesity-Associated Metabolic Disorders in Zucker Diabetic Fatty Rats. E. Misawa., M. Tanaka., K. Nomaguchi., K. Nabeshima., M. Yamada., T. Toida., and K. Iwatsuki. J. Agric. Food Chem., 2012, 60 (11), pp 2799-2806 |
83. |
Myocardial Infarction-Prone Watanabe Heritable Hyperlipidemic Rabbits with Mesenteric Fat Accumulation Are a Novel Animal Model for Metabolic Syndrome. M. Shiomi., T. Kobayashi., N. Kuniyoshi., S. Yamada., T. Ito. Pathobiology 2012;Vol. 79 No. 6 P329-338 |
84. |
High-fat diet-induced reduction of peroxisome proliferator-activated receptor-γ coactivator-1α messenger RNA levels and oxidative capacity in the soleus muscle of rats with metabolic syndrome. F. Nagatomo., H. Fujino., H. Kondo., I. Takeda., K. Tsuda., A. Ishihara. Nutrition Research, Vol. 32, Issue 2, February 2012, Pages 144-151 |
85. |
The effects of running exercise on oxidative capacity and PGC-1α mRNA levels in the soleus muscle of rats with metabolic syndrome. F. Nagatomo., H. Fujino., H. Kondo., M. Kouzaki., N. Gu., I. Takeda., K. Tsuda., and A. Ishihara. The Journal of Physiological Sciences, Vol. 62, Number 2 (2012), 105-114 |
86. |
A Comparative Study of Gastric Banding and Sleeve Gastrectomy in an Obese Diabetic Rat Model. T. Masuda., M. Ohta., T. Hirashita., Y. Kawano., H. Egucji., K. Yada., Y. Iwashita., S. Kitano. Obesity Surgery, Published online:27 August 2011 |
87. |
Site dependency of fatty acid composition in adipose triacylglycerol in rats and its absence as a result of high-fat feeding. D. Sato., T. Nakamura., K. Tsutsumi., G. Shinzawa., T. Karimata., T. Okawa., Z. Fengc., and M. Kusunoki. Metabolism.Article in Press |
88. |
Dietary fructo-oligosaccharides improve insulin sensitivity along with the suppression of adipocytokine secretion from mesenteric fat cells in rats. A. Shinoki., and H. Hara. British Journal of Nutrition.Published online :02 June 2011. |
89. |
Food restriction improves glucose and lipid metabolism through Sirt1 expression: A study using a new rat model with obesity and severe hypertension. K. Takemori.,T. Kimura.,N. Shirasaka.,T. Inoue.,K. Masuno., and H. Ito. Life Sciences.Vol.88, Issues 25-26, 1088-1094. 2011 |
90. |
Enhanced Urinary Bladder, Liver and Colon Carcinogenesis in Zucker Diabetic Fatty Rats in a Multiorgan Carcinogenesis Bioassay: Evidence for Mechanisms Involving Activation of PI3K Signaling and Impairment of P53 on Urinary Bladder Carcinogenesis. N. Ishii., M. Wei., A. Kakehashi., K. Doi., S. Yamano., M. Inaba., and H.Wanibuchi. Journal of Toxicologic Pathology .Vol. 24 (2011) , No. 1 pp.25 |
91. |
Maternal low-protein diet suppresses vascular and renal endothelial nitric oxide synthase phosphorylation in rat offspring independent of a postnatal fructose diet. S. Sato.,Y. Mukai., and T. Norikura. Journal of Developmental Origins of Health and Disease (2011), 2: 168-175 |
92. |
Combined Effects of Short-term Calorie Restriction and Exercise on Insulin Action in Normal Rats. H,Y,Jiang.,T,Koike.,P,Li.,Z,H,Wang.,Y,Kawata.,Y,Oshida. Horm Metab Res 2010; 42(13): 950-954 |
93. |
Dietary Hesperidin Exerts Hypoglycemic and Hypolipidemic Effects in Streptozocin-Induce Marginal Type 1 Diabetic Rats. Akiyama,S., Katsumata,S., Suzuki,K., Ishimi,Y.,Wu,J., and Uehara,M.. J Clin Biochem Nutr.January;46(1):87-92.2010 |
94. |
Hypoglycemic and Hypolipidemic Effects of Hesperidin and Cyclodextrin-Clathrated Hesperetin in Goto-Kakizaki Rats with Type 2 Diabetes. Akiyama,S., Katsumata,S., Suzuki,K., Nakayama,Y., Ishimi,Y. and Uehara,M. Bioscience,Biotechnology,and Biochemistry.Vol.73,No.12 pp.2779-2782(2009) |
95. |
Anti-Diabetic Effects of Pumpkin and Its Components,Trigonelline and Nicotinic Acid,on Goto-Kakizaki Rats. Yoshinari,O.,Sato,H.and Igarashi,K. Bioscience,Biotechnology,and Biochemistry.Vol.73,No5pp.1033-1041,2009 |
96. |
Dietary Phosphatidylinositol Prevents the Development of Nonalcoholic Fatty Liver Disease in Zucker(fa/fa)Rats Shirouchi,B.,Nagao,K.,Inoue,N.,Furuya,K.,Koga,S.,Matsumoto,H. and Yanagita,T. J.Agric.Food Chem.56,2375-2379,2008 |
97. |
Investigation of the anti-obesity action of licorice flavonoid oil in diet-induced obese rats. Kamisoyama,H.,Honda,K.,Tominaga,Y.,Yokota,S.,Hasegawa,S. Bioscience.Biotechnology and Biochemistry 72.(12)3225-3231,2008 |
98. |
Erythrophagocytosis by Liver Macrophages(Kupffer Cells)Promotes Oxidative Stress, Inflammation,and Fibrosis in a Rabbit Model of Steatohepatitis. Otogawa,K.,Kinoshita,K.,Fujii,H.,Sakabe,M.,Shiga,R.,Nakatani,K.,Ikeda,K.,Nakajima,Y.,Ikura,Y.,Ueda,M., Arakawa,T.,Hato,F., and Kawada,N. American Journal of Pathology. 170:967-980, 2007 |
99. |
Age- and sex-related diferences in spontaneous hemorrhage and fibrosis of the pancreatic islets in Sprague-Dawley rats. Imaoka, M., Satoh, H. and Furuhama, K. Toxicologic Pathology 35: 388-394, 2007 |
100. |
Effect of 5-Campestenone (24-methylcholest-5-en-3-one) on Zucker Diabetic Fatty Rats as a Type 2 Diabetes Mellitus Model. R.Konno, Y.,Kaneko, K.,Suzuki, Y.,Matsui. Horm Metab Res ; 37(3): 79-83,2005 |
101. |
Oxidized but not acetylated low-density lipoprotein reduces preproinsulin mRNA expression and secretion of insulin from HIT-T15 cells. Okajima,F.,Kurihara,M.,Ono,C.,Nakajima,Y.,Tanimura,K.,Sugihara,H.,Ttsuguchi,A.,Nakagawa,K., Miyazawa,T.,and Oikawa,S. Biochimica et Biophysica Acta (BBA) – Molecular and Cell Biology of Lipids, Volume 1687, Issues 1-3, pp.173-180, 2005 |
102. |
The role of calcium/calmodulin-dependent protein kinase cascade in glucose upregulation of insulin gene expression. Xiao Yu, Koji Murao, Yoshitaka Sayo, Hitomi Imachi, Wen M. Cao, Shouji Ohtsuka, Michio Niimi, Hiroshi Tokumitsu, Hiroyuki Inuzuka, Norman C.W. Wong, Ryoji Kobayashi, and Toshihiko Ishida. Diabetes, 53: 1475-1481, 2004 |
103. |
PVA hydrogel sheet macroencapsulation for the bioartificial pancreas. Qi M, Gu Y, Sakata N, Kim D, Shirouzu Y, Yamamoto C, Hiura A, Sumi S, Inoue K. Biomaterials. 25: 5885-5892, 2004 |
104. |
Alterations in vascular endothelial function in the aorta and mesenteric artery in type II diabetic rats. Takayuki Matsumoto, Kentaro Wakabayashi, Tsuneo Kobayashi, and Katsuo Kamata Can. J. Physiol. Pharmacol. 82(3): 175-182, 2004 |
105. |
Effect of eicosapentaenoic acid ethyl ester v. oleic acid-rich safflower oil on insulin resistance in type 2 diabetic model rats with hypertriacylglycerolaemia. Asako Minami, Noriko Ishimura, Sadaichi Sakamoto, Eiko Takishita, Kazuaki Mawatari, Kazuko Okada and Yutaka Nakaya. British J Nutrition 87, 157-162, 2002. |
106. |
Evaluation of Insulin Secretion of Isolated Rat Islets Cultured in Extracellular Matrix. Nagata N.; Gu Y.; Hori H.; Balamurugan A.N.; Touma M.; Kawakami Y.; Wang W.; Baba T.T.; Satake A.; Nozawa M.; Tabata Y.; Inoue K. Cell Transplantation, 10, 447-451, 2001 |
107. |
Lactoferrin ameliorates corticosterone-related acute stress and hyperglycemia in rats. Maekawa Y, Sugiyama A, Takeuchi T. J Vet Med Sci. 2017 Feb 28;79(2):412-417. |
产品编号 | 产品名称 | 产品规格 | 产品等级 | 备注 |
631-01479 | (AKRIN-010T) LBIS® Rat Insulin ELISA Kit(T-type) LBIS® 大鼠胰岛素 ELISA试剂盒(T型) |
96 tests | – | – |
免责声明 |
1. 本公司密切关注本网站发布的内容,但不保证发布内容的准确性、完整性、可靠性和最新性等。 2. 本公司不保证使用本网站期间不会出现故障或计算机病毒污染的风险。 3. 无论何种原因,使用本网站时给用户或第三方造成的任何不利或损害,本公司概不负责。此外,对于用户与其他用户或第三方之间因本网站发生的任何交易、通讯 3. 或纠纷,本公司概不负责。 4. 本网站可提供的所有产品和服务均不得用于人体或动物的临床诊断或治疗,仅可用于科研等非医疗目的。如任何用户将本网站提供的产品和服务用于临床诊断或治 4. 疗,以及其他特定的用途或行为,本公司概不保证其安全性和有效性,并且不负任何相关的法律责任。 |